Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr4i | GIF version |
Description: An equality transitivity inference. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
eqtr4i.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
eqtr4i | ⊢ 𝐴 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr4i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | eqtr4i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2174 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | eqtri 2191 | 1 ⊢ 𝐴 = 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-4 1503 ax-17 1519 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 |
This theorem is referenced by: 3eqtr2i 2197 3eqtr2ri 2198 3eqtr4i 2201 3eqtr4ri 2202 rabab 2751 cbvralcsf 3111 cbvrexcsf 3112 cbvrabcsf 3114 dfin5 3128 dfdif2 3129 uneqin 3378 unrab 3398 inrab 3399 inrab2 3400 difrab 3401 dfrab3ss 3405 rabun2 3406 difidALT 3484 difdifdirss 3499 dfif3 3539 tpidm 3685 dfint2 3833 iunrab 3920 uniiun 3926 intiin 3927 0iin 3931 mptv 4086 xpundi 4667 xpundir 4668 resiun2 4911 resopab 4935 opabresid 4944 dfse2 4984 cnvun 5016 cnvin 5018 imaundir 5024 imainrect 5056 cnvcnv2 5064 cnvcnvres 5074 dmtpop 5086 rnsnopg 5089 rnco2 5118 dmco 5119 co01 5125 unidmrn 5143 dfdm2 5145 funimaexg 5282 dfmpt3 5320 mptun 5329 funcocnv2 5467 fnasrn 5674 fnasrng 5676 fpr 5678 fmptap 5686 riotav 5814 dmoprab 5934 rnoprab2 5937 mpov 5943 mpomptx 5944 abrexex2g 6099 abrexex2 6103 1stval2 6134 2ndval2 6135 fo1st 6136 fo2nd 6137 xp2 6152 dfoprab4f 6172 fmpoco 6195 tposmpo 6260 recsfval 6294 frecfnom 6380 freccllem 6381 frecfcllem 6383 frecsuclem 6385 df2o3 6409 o1p1e2 6447 ecqs 6575 qliftf 6598 erovlem 6605 mapsnf1o3 6675 ixp0x 6704 xpf1o 6822 djuunr 7043 dmaddpq 7341 dmmulpq 7342 enq0enq 7393 nqprlu 7509 m1p1sr 7722 m1m1sr 7723 caucvgsr 7764 dfcnqs 7803 3m1e2 8998 2p2e4 9005 3p2e5 9019 3p3e6 9020 4p2e6 9021 4p3e7 9022 4p4e8 9023 5p2e7 9024 5p3e8 9025 5p4e9 9026 6p2e8 9027 6p3e9 9028 7p2e9 9029 nn0supp 9187 nnzrab 9236 nn0zrab 9237 dec0u 9363 dec0h 9364 decsuc 9373 decsucc 9383 numma 9386 decma 9393 decmac 9394 decma2c 9395 decadd 9396 decaddc 9397 decmul1 9406 decmul1c 9407 decmul2c 9408 5p5e10 9413 6p4e10 9414 7p3e10 9417 8p2e10 9422 5t5e25 9445 6t6e36 9450 8t6e48 9461 nn0uz 9521 nnuz 9522 xaddcom 9818 ioomax 9905 iccmax 9906 ioopos 9907 ioorp 9908 fseq1p1m1 10050 fzo0to2pr 10174 fzo0to3tp 10175 frecfzennn 10382 irec 10575 sq10e99m1 10647 facnn 10661 fac0 10662 faclbnd2 10676 zfz1isolemsplit 10773 minmax 11193 xrminmax 11228 fisumrev2 11409 fsumparts 11433 fsumiun 11440 isumnn0nn 11456 fprod2d 11586 fprodle 11603 ege2le3 11634 cos1bnd 11722 efieq1re 11734 eirraplem 11739 phiprmpw 12176 unennn 12352 ennnfonelemjn 12357 qnnen 12386 strle1g 12508 tgrest 12963 uniretop 13319 dvexp 13469 dvef 13482 cospi 13515 sincos6thpi 13557 lgsdir2lem2 13724 bj-omind 13969 |
Copyright terms: Public domain | W3C validator |