![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr4i | GIF version |
Description: An equality transitivity inference. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
eqtr4i.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
eqtr4i | ⊢ 𝐴 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr4i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | eqtr4i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2197 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | eqtri 2214 | 1 ⊢ 𝐴 = 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: 3eqtr2i 2220 3eqtr2ri 2221 3eqtr4i 2224 3eqtr4ri 2225 rabab 2781 cbvralcsf 3143 cbvrexcsf 3144 cbvrabcsf 3146 dfin5 3160 dfdif2 3161 uneqin 3410 unrab 3430 inrab 3431 inrab2 3432 difrab 3433 dfrab3ss 3437 rabun2 3438 difidALT 3516 difdifdirss 3531 dfif3 3570 tpidm 3720 dfint2 3872 iunrab 3960 uniiun 3966 intiin 3967 0iin 3971 mptv 4126 xpundi 4715 xpundir 4716 resiun2 4962 resopab 4986 mptresid 4996 dfse2 5038 cnvun 5071 cnvin 5073 imaundir 5079 imainrect 5111 cnvcnv2 5119 cnvcnvres 5129 dmtpop 5141 rnsnopg 5144 rnco2 5173 dmco 5174 co01 5180 unidmrn 5198 dfdm2 5200 funimaexg 5338 dfmpt3 5376 mptun 5385 funcocnv2 5525 fnasrn 5736 fnasrng 5738 fpr 5740 fmptap 5748 riotav 5879 dmoprab 5999 rnoprab2 6002 mpov 6008 mpomptx 6009 abrexex2g 6172 abrexex2 6176 1stval2 6208 2ndval2 6209 fo1st 6210 fo2nd 6211 xp2 6226 dfoprab4f 6246 fmpoco 6269 tposmpo 6334 recsfval 6368 frecfnom 6454 freccllem 6455 frecfcllem 6457 frecsuclem 6459 df2o3 6483 o1p1e2 6521 ecqs 6651 qliftf 6674 erovlem 6681 mapsnf1o3 6751 ixp0x 6780 xpf1o 6900 djuunr 7125 dmaddpq 7439 dmmulpq 7440 enq0enq 7491 nqprlu 7607 m1p1sr 7820 m1m1sr 7821 caucvgsr 7862 dfcnqs 7901 3m1e2 9102 2p2e4 9109 3p2e5 9123 3p3e6 9124 4p2e6 9125 4p3e7 9126 4p4e8 9127 5p2e7 9128 5p3e8 9129 5p4e9 9130 6p2e8 9131 6p3e9 9132 7p2e9 9133 nn0supp 9292 nnzrab 9341 nn0zrab 9342 dec0u 9468 dec0h 9469 decsuc 9478 decsucc 9488 numma 9491 decma 9498 decmac 9499 decma2c 9500 decadd 9501 decaddc 9502 decmul1 9511 decmul1c 9512 decmul2c 9513 5p5e10 9518 6p4e10 9519 7p3e10 9522 8p2e10 9527 5t5e25 9550 6t6e36 9555 8t6e48 9566 nn0uz 9627 nnuz 9628 xaddcom 9927 ioomax 10014 iccmax 10015 ioopos 10016 ioorp 10017 fseq1p1m1 10160 fzo0to2pr 10285 fzo0to3tp 10286 frecfzennn 10497 irec 10710 sq10e99m1 10784 facnn 10798 fac0 10799 faclbnd2 10813 zfz1isolemsplit 10909 minmax 11373 xrminmax 11408 fisumrev2 11589 fsumparts 11613 fsumiun 11620 isumnn0nn 11636 fprod2d 11766 fprodle 11783 ege2le3 11814 cos1bnd 11902 efieq1re 11915 eirraplem 11920 phiprmpw 12360 4sqlem11 12539 4sqlem19 12547 unennn 12554 ennnfonelemjn 12559 qnnen 12588 strle1g 12724 quslem 12907 rmodislmod 13847 tgrest 14337 uniretop 14693 dvexp 14860 dvef 14873 elply2 14881 cospi 14935 sincos6thpi 14977 lgsdir2lem2 15145 2lgsoddprmlem3c 15197 bj-omind 15426 |
Copyright terms: Public domain | W3C validator |