![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr4i | GIF version |
Description: An equality transitivity inference. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
eqtr4i.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
eqtr4i | ⊢ 𝐴 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr4i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | eqtr4i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2104 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | eqtri 2120 | 1 ⊢ 𝐴 = 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1299 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-gen 1393 ax-4 1455 ax-17 1474 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-cleq 2093 |
This theorem is referenced by: 3eqtr2i 2126 3eqtr2ri 2127 3eqtr4i 2130 3eqtr4ri 2131 rabab 2662 cbvralcsf 3012 cbvrexcsf 3013 cbvrabcsf 3015 dfin5 3028 dfdif2 3029 uneqin 3274 unrab 3294 inrab 3295 inrab2 3296 difrab 3297 dfrab3ss 3301 rabun2 3302 difidALT 3379 difdifdirss 3394 dfif3 3434 tpidm 3572 dfint2 3720 iunrab 3807 uniiun 3813 intiin 3814 0iin 3818 mptv 3965 xpundi 4533 xpundir 4534 resiun2 4775 resopab 4799 opabresid 4808 dfse2 4848 cnvun 4880 cnvin 4882 imaundir 4888 imainrect 4920 cnvcnv2 4928 cnvcnvres 4938 dmtpop 4950 rnsnopg 4953 rnco2 4982 dmco 4983 co01 4989 unidmrn 5007 dfdm2 5009 funimaexg 5143 dfmpt3 5181 mptun 5190 funcocnv2 5326 fnasrn 5530 fnasrng 5532 fpr 5534 fmptap 5542 riotav 5667 dmoprab 5784 rnoprab2 5787 mpov 5793 mpomptx 5794 abrexex2g 5949 abrexex2 5953 1stval2 5984 2ndval2 5985 fo1st 5986 fo2nd 5987 xp2 6001 dfoprab4f 6021 fmpoco 6043 tposmpo 6108 recsfval 6142 frecfnom 6228 freccllem 6229 frecfcllem 6231 frecsuclem 6233 df2o3 6257 o1p1e2 6294 ecqs 6421 qliftf 6444 erovlem 6451 mapsnf1o3 6521 ixp0x 6550 xpf1o 6667 djuunr 6866 dmaddpq 7088 dmmulpq 7089 enq0enq 7140 nqprlu 7256 m1p1sr 7456 m1m1sr 7457 caucvgsr 7497 dfcnqs 7528 3m1e2 8698 2p2e4 8699 3p2e5 8713 3p3e6 8714 4p2e6 8715 4p3e7 8716 4p4e8 8717 5p2e7 8718 5p3e8 8719 5p4e9 8720 6p2e8 8721 6p3e9 8722 7p2e9 8723 nn0supp 8881 nnzrab 8930 nn0zrab 8931 dec0u 9054 dec0h 9055 decsuc 9064 decsucc 9074 numma 9077 decma 9084 decmac 9085 decma2c 9086 decadd 9087 decaddc 9088 decmul1 9097 decmul1c 9098 decmul2c 9099 5p5e10 9104 6p4e10 9105 7p3e10 9108 8p2e10 9113 5t5e25 9136 6t6e36 9141 8t6e48 9152 nn0uz 9210 nnuz 9211 xaddcom 9485 ioomax 9572 iccmax 9573 ioopos 9574 ioorp 9575 fseq1p1m1 9715 fzo0to2pr 9836 fzo0to3tp 9837 frecfzennn 10040 irec 10233 sq10e99m1 10301 facnn 10314 fac0 10315 faclbnd2 10329 zfz1isolemsplit 10422 minmax 10840 xrminmax 10873 fisumrev2 11054 fsumparts 11078 fsumiun 11085 isumnn0nn 11101 ege2le3 11175 cos1bnd 11264 efieq1re 11275 eirraplem 11278 phiprmpw 11690 unennn 11702 ennnfonelemjn 11707 qnnen 11736 strle1g 11831 tgrest 12120 uniretop 12447 bj-omind 12717 |
Copyright terms: Public domain | W3C validator |