| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4i | GIF version | ||
| Description: An equality transitivity inference. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
| eqtr4i.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| eqtr4i | ⊢ 𝐴 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eqtr4i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2210 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | eqtri 2227 | 1 ⊢ 𝐴 = 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 |
| This theorem is referenced by: 3eqtr2i 2233 3eqtr2ri 2234 3eqtr4i 2237 3eqtr4ri 2238 rabab 2795 cbvralcsf 3160 cbvrexcsf 3161 cbvrabcsf 3163 dfin5 3177 dfdif2 3178 uneqin 3428 unrab 3448 inrab 3449 inrab2 3450 difrab 3451 dfrab3ss 3455 rabun2 3456 difidALT 3534 difdifdirss 3549 dfif3 3589 tpidm 3740 dfint2 3893 iunrab 3981 uniiun 3987 intiin 3988 0iin 3992 mptv 4149 xpundi 4739 xpundir 4740 resiun2 4988 resopab 5012 mptresid 5022 dfse2 5064 cnvun 5097 cnvin 5099 imaundir 5105 imainrect 5137 cnvcnv2 5145 cnvcnvres 5155 dmtpop 5167 rnsnopg 5170 rnco2 5199 dmco 5200 co01 5206 unidmrn 5224 dfdm2 5226 funimaexg 5367 dfmpt3 5408 mptun 5417 funcocnv2 5559 fnasrn 5771 fnasrng 5773 fpr 5779 fmptap 5787 riotav 5918 dmoprab 6039 rnoprab2 6042 mpov 6048 mpomptx 6049 abrexex2g 6218 abrexex2 6222 1stval2 6254 2ndval2 6255 fo1st 6256 fo2nd 6257 xp2 6272 dfoprab4f 6292 fmpoco 6315 tposmpo 6380 recsfval 6414 frecfnom 6500 freccllem 6501 frecfcllem 6503 frecsuclem 6505 df2o3 6529 o1p1e2 6567 ecqs 6697 qliftf 6720 erovlem 6727 mapsnf1o3 6797 ixp0x 6826 xpf1o 6956 djuunr 7183 dmaddpq 7512 dmmulpq 7513 enq0enq 7564 nqprlu 7680 m1p1sr 7893 m1m1sr 7894 caucvgsr 7935 dfcnqs 7974 3m1e2 9176 2p2e4 9183 3p2e5 9198 3p3e6 9199 4p2e6 9200 4p3e7 9201 4p4e8 9202 5p2e7 9203 5p3e8 9204 5p4e9 9205 6p2e8 9206 6p3e9 9207 7p2e9 9208 nn0supp 9367 nnzrab 9416 nn0zrab 9417 dec0u 9544 dec0h 9545 decsuc 9554 decsucc 9564 numma 9567 decma 9574 decmac 9575 decma2c 9576 decadd 9577 decaddc 9578 decmul1 9587 decmul1c 9588 decmul2c 9589 5p5e10 9594 6p4e10 9595 7p3e10 9598 8p2e10 9603 5t5e25 9626 6t6e36 9631 8t6e48 9642 nn0uz 9703 nnuz 9704 xaddcom 10003 ioomax 10090 iccmax 10091 ioopos 10092 ioorp 10093 fseq1p1m1 10236 fzo0to2pr 10369 fzo0to3tp 10370 frecfzennn 10593 irec 10806 sq10e99m1 10880 facnn 10894 fac0 10895 faclbnd2 10909 zfz1isolemsplit 11005 minmax 11616 xrminmax 11651 fisumrev2 11832 fsumparts 11856 fsumiun 11863 isumnn0nn 11879 fprod2d 12009 fprodle 12026 ege2le3 12057 cos1bnd 12145 efieq1re 12158 eirraplem 12163 3dvds 12250 m1bits 12346 phiprmpw 12619 4sqlem11 12799 4sqlem19 12807 dec5dvds 12810 decsplit1 12826 unennn 12843 ennnfonelemjn 12848 qnnen 12877 strle1g 13013 quslem 13231 rmodislmod 14188 tgrest 14716 uniretop 15072 cnfldtopn 15086 dvexp 15258 dvef 15274 elply2 15282 cospi 15347 sincos6thpi 15389 lgsdir2lem2 15581 lgsquadlem2 15630 lgsquad2lem2 15634 2lgsoddprmlem3c 15661 bj-omind 16008 |
| Copyright terms: Public domain | W3C validator |