| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4i | GIF version | ||
| Description: An equality transitivity inference. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
| eqtr4i.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| eqtr4i | ⊢ 𝐴 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eqtr4i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2208 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | eqtri 2225 | 1 ⊢ 𝐴 = 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-4 1532 ax-17 1548 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 |
| This theorem is referenced by: 3eqtr2i 2231 3eqtr2ri 2232 3eqtr4i 2235 3eqtr4ri 2236 rabab 2792 cbvralcsf 3155 cbvrexcsf 3156 cbvrabcsf 3158 dfin5 3172 dfdif2 3173 uneqin 3423 unrab 3443 inrab 3444 inrab2 3445 difrab 3446 dfrab3ss 3450 rabun2 3451 difidALT 3529 difdifdirss 3544 dfif3 3583 tpidm 3734 dfint2 3886 iunrab 3974 uniiun 3980 intiin 3981 0iin 3985 mptv 4140 xpundi 4730 xpundir 4731 resiun2 4978 resopab 5002 mptresid 5012 dfse2 5054 cnvun 5087 cnvin 5089 imaundir 5095 imainrect 5127 cnvcnv2 5135 cnvcnvres 5145 dmtpop 5157 rnsnopg 5160 rnco2 5189 dmco 5190 co01 5196 unidmrn 5214 dfdm2 5216 funimaexg 5357 dfmpt3 5397 mptun 5406 funcocnv2 5546 fnasrn 5757 fnasrng 5759 fpr 5765 fmptap 5773 riotav 5904 dmoprab 6025 rnoprab2 6028 mpov 6034 mpomptx 6035 abrexex2g 6204 abrexex2 6208 1stval2 6240 2ndval2 6241 fo1st 6242 fo2nd 6243 xp2 6258 dfoprab4f 6278 fmpoco 6301 tposmpo 6366 recsfval 6400 frecfnom 6486 freccllem 6487 frecfcllem 6489 frecsuclem 6491 df2o3 6515 o1p1e2 6553 ecqs 6683 qliftf 6706 erovlem 6713 mapsnf1o3 6783 ixp0x 6812 xpf1o 6940 djuunr 7167 dmaddpq 7491 dmmulpq 7492 enq0enq 7543 nqprlu 7659 m1p1sr 7872 m1m1sr 7873 caucvgsr 7914 dfcnqs 7953 3m1e2 9155 2p2e4 9162 3p2e5 9177 3p3e6 9178 4p2e6 9179 4p3e7 9180 4p4e8 9181 5p2e7 9182 5p3e8 9183 5p4e9 9184 6p2e8 9185 6p3e9 9186 7p2e9 9187 nn0supp 9346 nnzrab 9395 nn0zrab 9396 dec0u 9523 dec0h 9524 decsuc 9533 decsucc 9543 numma 9546 decma 9553 decmac 9554 decma2c 9555 decadd 9556 decaddc 9557 decmul1 9566 decmul1c 9567 decmul2c 9568 5p5e10 9573 6p4e10 9574 7p3e10 9577 8p2e10 9582 5t5e25 9605 6t6e36 9610 8t6e48 9621 nn0uz 9682 nnuz 9683 xaddcom 9982 ioomax 10069 iccmax 10070 ioopos 10071 ioorp 10072 fseq1p1m1 10215 fzo0to2pr 10345 fzo0to3tp 10346 frecfzennn 10569 irec 10782 sq10e99m1 10856 facnn 10870 fac0 10871 faclbnd2 10885 zfz1isolemsplit 10981 minmax 11483 xrminmax 11518 fisumrev2 11699 fsumparts 11723 fsumiun 11730 isumnn0nn 11746 fprod2d 11876 fprodle 11893 ege2le3 11924 cos1bnd 12012 efieq1re 12025 eirraplem 12030 3dvds 12117 m1bits 12213 phiprmpw 12486 4sqlem11 12666 4sqlem19 12674 dec5dvds 12677 decsplit1 12693 unennn 12710 ennnfonelemjn 12715 qnnen 12744 strle1g 12880 quslem 13098 rmodislmod 14055 tgrest 14583 uniretop 14939 cnfldtopn 14953 dvexp 15125 dvef 15141 elply2 15149 cospi 15214 sincos6thpi 15256 lgsdir2lem2 15448 lgsquadlem2 15497 lgsquad2lem2 15501 2lgsoddprmlem3c 15528 bj-omind 15803 |
| Copyright terms: Public domain | W3C validator |