![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr4i | GIF version |
Description: An equality transitivity inference. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
eqtr4i.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
eqtr4i | ⊢ 𝐴 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr4i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | eqtr4i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2197 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | eqtri 2214 | 1 ⊢ 𝐴 = 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-4 1521 ax-17 1537 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 |
This theorem is referenced by: 3eqtr2i 2220 3eqtr2ri 2221 3eqtr4i 2224 3eqtr4ri 2225 rabab 2781 cbvralcsf 3144 cbvrexcsf 3145 cbvrabcsf 3147 dfin5 3161 dfdif2 3162 uneqin 3411 unrab 3431 inrab 3432 inrab2 3433 difrab 3434 dfrab3ss 3438 rabun2 3439 difidALT 3517 difdifdirss 3532 dfif3 3571 tpidm 3721 dfint2 3873 iunrab 3961 uniiun 3967 intiin 3968 0iin 3972 mptv 4127 xpundi 4716 xpundir 4717 resiun2 4963 resopab 4987 mptresid 4997 dfse2 5039 cnvun 5072 cnvin 5074 imaundir 5080 imainrect 5112 cnvcnv2 5120 cnvcnvres 5130 dmtpop 5142 rnsnopg 5145 rnco2 5174 dmco 5175 co01 5181 unidmrn 5199 dfdm2 5201 funimaexg 5339 dfmpt3 5377 mptun 5386 funcocnv2 5526 fnasrn 5737 fnasrng 5739 fpr 5741 fmptap 5749 riotav 5880 dmoprab 6000 rnoprab2 6003 mpov 6009 mpomptx 6010 abrexex2g 6174 abrexex2 6178 1stval2 6210 2ndval2 6211 fo1st 6212 fo2nd 6213 xp2 6228 dfoprab4f 6248 fmpoco 6271 tposmpo 6336 recsfval 6370 frecfnom 6456 freccllem 6457 frecfcllem 6459 frecsuclem 6461 df2o3 6485 o1p1e2 6523 ecqs 6653 qliftf 6676 erovlem 6683 mapsnf1o3 6753 ixp0x 6782 xpf1o 6902 djuunr 7127 dmaddpq 7441 dmmulpq 7442 enq0enq 7493 nqprlu 7609 m1p1sr 7822 m1m1sr 7823 caucvgsr 7864 dfcnqs 7903 3m1e2 9104 2p2e4 9111 3p2e5 9126 3p3e6 9127 4p2e6 9128 4p3e7 9129 4p4e8 9130 5p2e7 9131 5p3e8 9132 5p4e9 9133 6p2e8 9134 6p3e9 9135 7p2e9 9136 nn0supp 9295 nnzrab 9344 nn0zrab 9345 dec0u 9471 dec0h 9472 decsuc 9481 decsucc 9491 numma 9494 decma 9501 decmac 9502 decma2c 9503 decadd 9504 decaddc 9505 decmul1 9514 decmul1c 9515 decmul2c 9516 5p5e10 9521 6p4e10 9522 7p3e10 9525 8p2e10 9530 5t5e25 9553 6t6e36 9558 8t6e48 9569 nn0uz 9630 nnuz 9631 xaddcom 9930 ioomax 10017 iccmax 10018 ioopos 10019 ioorp 10020 fseq1p1m1 10163 fzo0to2pr 10288 fzo0to3tp 10289 frecfzennn 10500 irec 10713 sq10e99m1 10787 facnn 10801 fac0 10802 faclbnd2 10816 zfz1isolemsplit 10912 minmax 11376 xrminmax 11411 fisumrev2 11592 fsumparts 11616 fsumiun 11623 isumnn0nn 11639 fprod2d 11769 fprodle 11786 ege2le3 11817 cos1bnd 11905 efieq1re 11918 eirraplem 11923 phiprmpw 12363 4sqlem11 12542 4sqlem19 12550 unennn 12557 ennnfonelemjn 12562 qnnen 12591 strle1g 12727 quslem 12910 rmodislmod 13850 tgrest 14348 uniretop 14704 cnfldtopn 14718 dvexp 14890 dvef 14906 elply2 14914 cospi 14976 sincos6thpi 15018 lgsdir2lem2 15186 lgsquadlem2 15235 lgsquad2lem2 15239 2lgsoddprmlem3c 15266 bj-omind 15496 |
Copyright terms: Public domain | W3C validator |