| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4i | GIF version | ||
| Description: An equality transitivity inference. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
| eqtr4i.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| eqtr4i | ⊢ 𝐴 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eqtr4i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2200 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | eqtri 2217 | 1 ⊢ 𝐴 = 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: 3eqtr2i 2223 3eqtr2ri 2224 3eqtr4i 2227 3eqtr4ri 2228 rabab 2784 cbvralcsf 3147 cbvrexcsf 3148 cbvrabcsf 3150 dfin5 3164 dfdif2 3165 uneqin 3415 unrab 3435 inrab 3436 inrab2 3437 difrab 3438 dfrab3ss 3442 rabun2 3443 difidALT 3521 difdifdirss 3536 dfif3 3575 tpidm 3725 dfint2 3877 iunrab 3965 uniiun 3971 intiin 3972 0iin 3976 mptv 4131 xpundi 4720 xpundir 4721 resiun2 4967 resopab 4991 mptresid 5001 dfse2 5043 cnvun 5076 cnvin 5078 imaundir 5084 imainrect 5116 cnvcnv2 5124 cnvcnvres 5134 dmtpop 5146 rnsnopg 5149 rnco2 5178 dmco 5179 co01 5185 unidmrn 5203 dfdm2 5205 funimaexg 5343 dfmpt3 5383 mptun 5392 funcocnv2 5532 fnasrn 5743 fnasrng 5745 fpr 5747 fmptap 5755 riotav 5886 dmoprab 6007 rnoprab2 6010 mpov 6016 mpomptx 6017 abrexex2g 6186 abrexex2 6190 1stval2 6222 2ndval2 6223 fo1st 6224 fo2nd 6225 xp2 6240 dfoprab4f 6260 fmpoco 6283 tposmpo 6348 recsfval 6382 frecfnom 6468 freccllem 6469 frecfcllem 6471 frecsuclem 6473 df2o3 6497 o1p1e2 6535 ecqs 6665 qliftf 6688 erovlem 6695 mapsnf1o3 6765 ixp0x 6794 xpf1o 6914 djuunr 7141 dmaddpq 7463 dmmulpq 7464 enq0enq 7515 nqprlu 7631 m1p1sr 7844 m1m1sr 7845 caucvgsr 7886 dfcnqs 7925 3m1e2 9127 2p2e4 9134 3p2e5 9149 3p3e6 9150 4p2e6 9151 4p3e7 9152 4p4e8 9153 5p2e7 9154 5p3e8 9155 5p4e9 9156 6p2e8 9157 6p3e9 9158 7p2e9 9159 nn0supp 9318 nnzrab 9367 nn0zrab 9368 dec0u 9494 dec0h 9495 decsuc 9504 decsucc 9514 numma 9517 decma 9524 decmac 9525 decma2c 9526 decadd 9527 decaddc 9528 decmul1 9537 decmul1c 9538 decmul2c 9539 5p5e10 9544 6p4e10 9545 7p3e10 9548 8p2e10 9553 5t5e25 9576 6t6e36 9581 8t6e48 9592 nn0uz 9653 nnuz 9654 xaddcom 9953 ioomax 10040 iccmax 10041 ioopos 10042 ioorp 10043 fseq1p1m1 10186 fzo0to2pr 10311 fzo0to3tp 10312 frecfzennn 10535 irec 10748 sq10e99m1 10822 facnn 10836 fac0 10837 faclbnd2 10851 zfz1isolemsplit 10947 minmax 11412 xrminmax 11447 fisumrev2 11628 fsumparts 11652 fsumiun 11659 isumnn0nn 11675 fprod2d 11805 fprodle 11822 ege2le3 11853 cos1bnd 11941 efieq1re 11954 eirraplem 11959 3dvds 12046 m1bits 12142 phiprmpw 12415 4sqlem11 12595 4sqlem19 12603 dec5dvds 12606 decsplit1 12622 unennn 12639 ennnfonelemjn 12644 qnnen 12673 strle1g 12809 quslem 13026 rmodislmod 13983 tgrest 14489 uniretop 14845 cnfldtopn 14859 dvexp 15031 dvef 15047 elply2 15055 cospi 15120 sincos6thpi 15162 lgsdir2lem2 15354 lgsquadlem2 15403 lgsquad2lem2 15407 2lgsoddprmlem3c 15434 bj-omind 15664 |
| Copyright terms: Public domain | W3C validator |