| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4i | GIF version | ||
| Description: An equality transitivity inference. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
| eqtr4i.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| eqtr4i | ⊢ 𝐴 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eqtr4i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2200 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | eqtri 2217 | 1 ⊢ 𝐴 = 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: 3eqtr2i 2223 3eqtr2ri 2224 3eqtr4i 2227 3eqtr4ri 2228 rabab 2784 cbvralcsf 3147 cbvrexcsf 3148 cbvrabcsf 3150 dfin5 3164 dfdif2 3165 uneqin 3415 unrab 3435 inrab 3436 inrab2 3437 difrab 3438 dfrab3ss 3442 rabun2 3443 difidALT 3521 difdifdirss 3536 dfif3 3575 tpidm 3725 dfint2 3877 iunrab 3965 uniiun 3971 intiin 3972 0iin 3976 mptv 4131 xpundi 4720 xpundir 4721 resiun2 4967 resopab 4991 mptresid 5001 dfse2 5043 cnvun 5076 cnvin 5078 imaundir 5084 imainrect 5116 cnvcnv2 5124 cnvcnvres 5134 dmtpop 5146 rnsnopg 5149 rnco2 5178 dmco 5179 co01 5185 unidmrn 5203 dfdm2 5205 funimaexg 5343 dfmpt3 5383 mptun 5392 funcocnv2 5532 fnasrn 5743 fnasrng 5745 fpr 5747 fmptap 5755 riotav 5886 dmoprab 6007 rnoprab2 6010 mpov 6016 mpomptx 6017 abrexex2g 6186 abrexex2 6190 1stval2 6222 2ndval2 6223 fo1st 6224 fo2nd 6225 xp2 6240 dfoprab4f 6260 fmpoco 6283 tposmpo 6348 recsfval 6382 frecfnom 6468 freccllem 6469 frecfcllem 6471 frecsuclem 6473 df2o3 6497 o1p1e2 6535 ecqs 6665 qliftf 6688 erovlem 6695 mapsnf1o3 6765 ixp0x 6794 xpf1o 6914 djuunr 7141 dmaddpq 7465 dmmulpq 7466 enq0enq 7517 nqprlu 7633 m1p1sr 7846 m1m1sr 7847 caucvgsr 7888 dfcnqs 7927 3m1e2 9129 2p2e4 9136 3p2e5 9151 3p3e6 9152 4p2e6 9153 4p3e7 9154 4p4e8 9155 5p2e7 9156 5p3e8 9157 5p4e9 9158 6p2e8 9159 6p3e9 9160 7p2e9 9161 nn0supp 9320 nnzrab 9369 nn0zrab 9370 dec0u 9496 dec0h 9497 decsuc 9506 decsucc 9516 numma 9519 decma 9526 decmac 9527 decma2c 9528 decadd 9529 decaddc 9530 decmul1 9539 decmul1c 9540 decmul2c 9541 5p5e10 9546 6p4e10 9547 7p3e10 9550 8p2e10 9555 5t5e25 9578 6t6e36 9583 8t6e48 9594 nn0uz 9655 nnuz 9656 xaddcom 9955 ioomax 10042 iccmax 10043 ioopos 10044 ioorp 10045 fseq1p1m1 10188 fzo0to2pr 10313 fzo0to3tp 10314 frecfzennn 10537 irec 10750 sq10e99m1 10824 facnn 10838 fac0 10839 faclbnd2 10853 zfz1isolemsplit 10949 minmax 11414 xrminmax 11449 fisumrev2 11630 fsumparts 11654 fsumiun 11661 isumnn0nn 11677 fprod2d 11807 fprodle 11824 ege2le3 11855 cos1bnd 11943 efieq1re 11956 eirraplem 11961 3dvds 12048 m1bits 12144 phiprmpw 12417 4sqlem11 12597 4sqlem19 12605 dec5dvds 12608 decsplit1 12624 unennn 12641 ennnfonelemjn 12646 qnnen 12675 strle1g 12811 quslem 13028 rmodislmod 13985 tgrest 14513 uniretop 14869 cnfldtopn 14883 dvexp 15055 dvef 15071 elply2 15079 cospi 15144 sincos6thpi 15186 lgsdir2lem2 15378 lgsquadlem2 15427 lgsquad2lem2 15431 2lgsoddprmlem3c 15458 bj-omind 15688 |
| Copyright terms: Public domain | W3C validator |