| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr4i | GIF version | ||
| Description: An equality transitivity inference. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
| eqtr4i.2 | ⊢ 𝐶 = 𝐵 |
| Ref | Expression |
|---|---|
| eqtr4i | ⊢ 𝐴 = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqtr4i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | eqtr4i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
| 3 | 2 | eqcomi 2233 | . 2 ⊢ 𝐵 = 𝐶 |
| 4 | 1, 3 | eqtri 2250 | 1 ⊢ 𝐴 = 𝐶 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: 3eqtr2i 2256 3eqtr2ri 2257 3eqtr4i 2260 3eqtr4ri 2261 rabab 2821 cbvralcsf 3187 cbvrexcsf 3188 cbvrabcsf 3190 dfin5 3204 dfdif2 3205 uneqin 3455 unrab 3475 inrab 3476 inrab2 3477 difrab 3478 dfrab3ss 3482 rabun2 3483 difidALT 3561 difdifdirss 3576 dfif3 3616 tpidm 3768 dfint2 3924 iunrab 4012 uniiun 4018 intiin 4019 0iin 4023 mptv 4180 xpundi 4774 xpundir 4775 resiun2 5024 resopab 5048 mptresid 5058 dfse2 5100 cnvun 5133 cnvin 5135 imaundir 5141 imainrect 5173 cnvcnv2 5181 cnvcnvres 5191 dmtpop 5203 rnsnopg 5206 rnco2 5235 dmco 5236 co01 5242 unidmrn 5260 dfdm2 5262 funimaexg 5404 dfmpt3 5445 mptun 5454 funcocnv2 5596 fnasrn 5812 fnasrng 5814 fpr 5820 fmptap 5828 riotav 5959 dmoprab 6084 rnoprab2 6087 mpov 6093 mpomptx 6094 abrexex2g 6263 abrexex2 6267 1stval2 6299 2ndval2 6300 fo1st 6301 fo2nd 6302 xp2 6317 dfoprab4f 6337 fmpoco 6360 tposmpo 6425 recsfval 6459 frecfnom 6545 freccllem 6546 frecfcllem 6548 frecsuclem 6550 df2o3 6574 o1p1e2 6612 ecqs 6742 qliftf 6765 erovlem 6772 mapsnf1o3 6842 ixp0x 6871 xpf1o 7001 djuunr 7229 dmaddpq 7562 dmmulpq 7563 enq0enq 7614 nqprlu 7730 m1p1sr 7943 m1m1sr 7944 caucvgsr 7985 dfcnqs 8024 3m1e2 9226 2p2e4 9233 3p2e5 9248 3p3e6 9249 4p2e6 9250 4p3e7 9251 4p4e8 9252 5p2e7 9253 5p3e8 9254 5p4e9 9255 6p2e8 9256 6p3e9 9257 7p2e9 9258 nn0supp 9417 nnzrab 9466 nn0zrab 9467 dec0u 9594 dec0h 9595 decsuc 9604 decsucc 9614 numma 9617 decma 9624 decmac 9625 decma2c 9626 decadd 9627 decaddc 9628 decmul1 9637 decmul1c 9638 decmul2c 9639 5p5e10 9644 6p4e10 9645 7p3e10 9648 8p2e10 9653 5t5e25 9676 6t6e36 9681 8t6e48 9692 nn0uz 9753 nnuz 9754 xaddcom 10053 ioomax 10140 iccmax 10141 ioopos 10142 ioorp 10143 fseq1p1m1 10286 fzo0to2pr 10419 fzo0to3tp 10420 frecfzennn 10643 irec 10856 sq10e99m1 10930 facnn 10944 fac0 10945 faclbnd2 10959 zfz1isolemsplit 11055 minmax 11736 xrminmax 11771 fisumrev2 11952 fsumparts 11976 fsumiun 11983 isumnn0nn 11999 fprod2d 12129 fprodle 12146 ege2le3 12177 cos1bnd 12265 efieq1re 12278 eirraplem 12283 3dvds 12370 m1bits 12466 phiprmpw 12739 4sqlem11 12919 4sqlem19 12927 dec5dvds 12930 decsplit1 12946 unennn 12963 ennnfonelemjn 12968 qnnen 12997 strle1g 13134 quslem 13352 rmodislmod 14309 tgrest 14837 uniretop 15193 cnfldtopn 15207 dvexp 15379 dvef 15395 elply2 15403 cospi 15468 sincos6thpi 15510 lgsdir2lem2 15702 lgsquadlem2 15751 lgsquad2lem2 15755 2lgsoddprmlem3c 15782 bj-omind 16255 |
| Copyright terms: Public domain | W3C validator |