Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr4i | GIF version |
Description: An equality transitivity inference. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqtr4i.1 | ⊢ 𝐴 = 𝐵 |
eqtr4i.2 | ⊢ 𝐶 = 𝐵 |
Ref | Expression |
---|---|
eqtr4i | ⊢ 𝐴 = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr4i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | eqtr4i.2 | . . 3 ⊢ 𝐶 = 𝐵 | |
3 | 2 | eqcomi 2179 | . 2 ⊢ 𝐵 = 𝐶 |
4 | 1, 3 | eqtri 2196 | 1 ⊢ 𝐴 = 𝐶 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-4 1508 ax-17 1524 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-cleq 2168 |
This theorem is referenced by: 3eqtr2i 2202 3eqtr2ri 2203 3eqtr4i 2206 3eqtr4ri 2207 rabab 2756 cbvralcsf 3117 cbvrexcsf 3118 cbvrabcsf 3120 dfin5 3134 dfdif2 3135 uneqin 3384 unrab 3404 inrab 3405 inrab2 3406 difrab 3407 dfrab3ss 3411 rabun2 3412 difidALT 3490 difdifdirss 3505 dfif3 3545 tpidm 3691 dfint2 3842 iunrab 3929 uniiun 3935 intiin 3936 0iin 3940 mptv 4095 xpundi 4676 xpundir 4677 resiun2 4920 resopab 4944 opabresid 4953 dfse2 4994 cnvun 5026 cnvin 5028 imaundir 5034 imainrect 5066 cnvcnv2 5074 cnvcnvres 5084 dmtpop 5096 rnsnopg 5099 rnco2 5128 dmco 5129 co01 5135 unidmrn 5153 dfdm2 5155 funimaexg 5292 dfmpt3 5330 mptun 5339 funcocnv2 5478 fnasrn 5686 fnasrng 5688 fpr 5690 fmptap 5698 riotav 5826 dmoprab 5946 rnoprab2 5949 mpov 5955 mpomptx 5956 abrexex2g 6111 abrexex2 6115 1stval2 6146 2ndval2 6147 fo1st 6148 fo2nd 6149 xp2 6164 dfoprab4f 6184 fmpoco 6207 tposmpo 6272 recsfval 6306 frecfnom 6392 freccllem 6393 frecfcllem 6395 frecsuclem 6397 df2o3 6421 o1p1e2 6459 ecqs 6587 qliftf 6610 erovlem 6617 mapsnf1o3 6687 ixp0x 6716 xpf1o 6834 djuunr 7055 dmaddpq 7353 dmmulpq 7354 enq0enq 7405 nqprlu 7521 m1p1sr 7734 m1m1sr 7735 caucvgsr 7776 dfcnqs 7815 3m1e2 9010 2p2e4 9017 3p2e5 9031 3p3e6 9032 4p2e6 9033 4p3e7 9034 4p4e8 9035 5p2e7 9036 5p3e8 9037 5p4e9 9038 6p2e8 9039 6p3e9 9040 7p2e9 9041 nn0supp 9199 nnzrab 9248 nn0zrab 9249 dec0u 9375 dec0h 9376 decsuc 9385 decsucc 9395 numma 9398 decma 9405 decmac 9406 decma2c 9407 decadd 9408 decaddc 9409 decmul1 9418 decmul1c 9419 decmul2c 9420 5p5e10 9425 6p4e10 9426 7p3e10 9429 8p2e10 9434 5t5e25 9457 6t6e36 9462 8t6e48 9473 nn0uz 9533 nnuz 9534 xaddcom 9830 ioomax 9917 iccmax 9918 ioopos 9919 ioorp 9920 fseq1p1m1 10062 fzo0to2pr 10186 fzo0to3tp 10187 frecfzennn 10394 irec 10587 sq10e99m1 10659 facnn 10673 fac0 10674 faclbnd2 10688 zfz1isolemsplit 10784 minmax 11204 xrminmax 11239 fisumrev2 11420 fsumparts 11444 fsumiun 11451 isumnn0nn 11467 fprod2d 11597 fprodle 11614 ege2le3 11645 cos1bnd 11733 efieq1re 11745 eirraplem 11750 phiprmpw 12187 unennn 12363 ennnfonelemjn 12368 qnnen 12397 strle1g 12519 tgrest 13220 uniretop 13576 dvexp 13726 dvef 13739 cospi 13772 sincos6thpi 13814 lgsdir2lem2 13981 bj-omind 14226 |
Copyright terms: Public domain | W3C validator |