ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfdif2 Unicode version

Theorem dfdif2 3165
Description: Alternate definition of class difference. (Contributed by NM, 25-Mar-2004.)
Assertion
Ref Expression
dfdif2  |-  ( A 
\  B )  =  { x  e.  A  |  -.  x  e.  B }
Distinct variable groups:    x, A    x, B

Proof of Theorem dfdif2
StepHypRef Expression
1 df-dif 3159 . 2  |-  ( A 
\  B )  =  { x  |  ( x  e.  A  /\  -.  x  e.  B
) }
2 df-rab 2484 . 2  |-  { x  e.  A  |  -.  x  e.  B }  =  { x  |  ( x  e.  A  /\  -.  x  e.  B
) }
31, 2eqtr4i 2220 1  |-  ( A 
\  B )  =  { x  e.  A  |  -.  x  e.  B }
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    = wceq 1364    e. wcel 2167   {cab 2182   {crab 2479    \ cdif 3154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-4 1524  ax-17 1540  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-rab 2484  df-dif 3159
This theorem is referenced by:  dfdif3  3273  difeq1  3274  difeq2  3275  nfdif  3284  difidALT  3520
  Copyright terms: Public domain W3C validator