ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difidALT GIF version

Theorem difidALT 3532
Description: The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. Alternate proof of difid 3531. (Contributed by David Abernethy, 17-Jun-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
difidALT (𝐴𝐴) = ∅

Proof of Theorem difidALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfdif2 3176 . 2 (𝐴𝐴) = {𝑥𝐴 ∣ ¬ 𝑥𝐴}
2 dfnul3 3465 . 2 ∅ = {𝑥𝐴 ∣ ¬ 𝑥𝐴}
31, 2eqtr4i 2230 1 (𝐴𝐴) = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1373  wcel 2177  {crab 2489  cdif 3165  c0 3462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494  df-v 2775  df-dif 3170  df-nul 3463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator