ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difidALT GIF version

Theorem difidALT 3484
Description: The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. Alternate proof of difid 3483. (Contributed by David Abernethy, 17-Jun-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
difidALT (𝐴𝐴) = ∅

Proof of Theorem difidALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfdif2 3129 . 2 (𝐴𝐴) = {𝑥𝐴 ∣ ¬ 𝑥𝐴}
2 dfnul3 3417 . 2 ∅ = {𝑥𝐴 ∣ ¬ 𝑥𝐴}
31, 2eqtr4i 2194 1 (𝐴𝐴) = ∅
Colors of variables: wff set class
Syntax hints:  ¬ wn 3   = wceq 1348  wcel 2141  {crab 2452  cdif 3118  c0 3414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457  df-v 2732  df-dif 3123  df-nul 3415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator