![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfdif | GIF version |
Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
nfdif.1 | ⊢ Ⅎ𝑥𝐴 |
nfdif.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfdif | ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdif2 3149 | . 2 ⊢ (𝐴 ∖ 𝐵) = {𝑦 ∈ 𝐴 ∣ ¬ 𝑦 ∈ 𝐵} | |
2 | nfdif.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
3 | 2 | nfcri 2323 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
4 | 3 | nfn 1668 | . . 3 ⊢ Ⅎ𝑥 ¬ 𝑦 ∈ 𝐵 |
5 | nfdif.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
6 | 4, 5 | nfrabxy 2668 | . 2 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ ¬ 𝑦 ∈ 𝐵} |
7 | 1, 6 | nfcxfr 2326 | 1 ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∈ wcel 2158 Ⅎwnfc 2316 {crab 2469 ∖ cdif 3138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-rab 2474 df-dif 3143 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |