Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inegd | GIF version |
Description: Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
inegd.1 | ⊢ ((𝜑 ∧ 𝜓) → ⊥) |
Ref | Expression |
---|---|
inegd | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inegd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ⊥) | |
2 | 1 | ex 114 | . 2 ⊢ (𝜑 → (𝜓 → ⊥)) |
3 | dfnot 1366 | . 2 ⊢ (¬ 𝜓 ↔ (𝜓 → ⊥)) | |
4 | 2, 3 | sylibr 133 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ⊥wfal 1353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 |
This theorem is referenced by: genpdisj 7472 cauappcvgprlemdisj 7600 caucvgprlemdisj 7623 caucvgprprlemdisj 7651 suplocexprlemdisj 7669 suplocexprlemub 7672 suplocsrlem 7757 resqrexlemgt0 10971 resqrexlemoverl 10972 leabs 11025 climge0 11275 isprm5lem 12082 ennnfonelemex 12356 dedekindeu 13354 dedekindicclemicc 13363 pw1nct 13996 |
Copyright terms: Public domain | W3C validator |