| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inegd | GIF version | ||
| Description: Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| inegd.1 | ⊢ ((𝜑 ∧ 𝜓) → ⊥) |
| Ref | Expression |
|---|---|
| inegd | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inegd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ⊥) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → ⊥)) |
| 3 | dfnot 1391 | . 2 ⊢ (¬ 𝜓 ↔ (𝜓 → ⊥)) | |
| 4 | 2, 3 | sylibr 134 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ⊥wfal 1378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 |
| This theorem is referenced by: genpdisj 7636 cauappcvgprlemdisj 7764 caucvgprlemdisj 7787 caucvgprprlemdisj 7815 suplocexprlemdisj 7833 suplocexprlemub 7836 suplocsrlem 7921 resqrexlemgt0 11331 resqrexlemoverl 11332 leabs 11385 climge0 11636 isprm5lem 12463 ennnfonelemex 12785 dedekindeu 15095 dedekindicclemicc 15104 pw1nct 15940 |
| Copyright terms: Public domain | W3C validator |