![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inegd | GIF version |
Description: Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
inegd.1 | ⊢ ((𝜑 ∧ 𝜓) → ⊥) |
Ref | Expression |
---|---|
inegd | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inegd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ⊥) | |
2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → ⊥)) |
3 | dfnot 1382 | . 2 ⊢ (¬ 𝜓 ↔ (𝜓 → ⊥)) | |
4 | 2, 3 | sylibr 134 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ⊥wfal 1369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 |
This theorem is referenced by: genpdisj 7583 cauappcvgprlemdisj 7711 caucvgprlemdisj 7734 caucvgprprlemdisj 7762 suplocexprlemdisj 7780 suplocexprlemub 7783 suplocsrlem 7868 resqrexlemgt0 11164 resqrexlemoverl 11165 leabs 11218 climge0 11468 isprm5lem 12279 ennnfonelemex 12571 dedekindeu 14777 dedekindicclemicc 14786 pw1nct 15493 |
Copyright terms: Public domain | W3C validator |