Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inegd | GIF version |
Description: Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
inegd.1 | ⊢ ((𝜑 ∧ 𝜓) → ⊥) |
Ref | Expression |
---|---|
inegd | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inegd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ⊥) | |
2 | 1 | ex 114 | . 2 ⊢ (𝜑 → (𝜓 → ⊥)) |
3 | dfnot 1366 | . 2 ⊢ (¬ 𝜓 ↔ (𝜓 → ⊥)) | |
4 | 2, 3 | sylibr 133 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ⊥wfal 1353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 |
This theorem is referenced by: genpdisj 7485 cauappcvgprlemdisj 7613 caucvgprlemdisj 7636 caucvgprprlemdisj 7664 suplocexprlemdisj 7682 suplocexprlemub 7685 suplocsrlem 7770 resqrexlemgt0 10984 resqrexlemoverl 10985 leabs 11038 climge0 11288 isprm5lem 12095 ennnfonelemex 12369 dedekindeu 13395 dedekindicclemicc 13404 pw1nct 14036 |
Copyright terms: Public domain | W3C validator |