Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > inegd | GIF version |
Description: Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
inegd.1 | ⊢ ((𝜑 ∧ 𝜓) → ⊥) |
Ref | Expression |
---|---|
inegd | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inegd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ⊥) | |
2 | 1 | ex 114 | . 2 ⊢ (𝜑 → (𝜓 → ⊥)) |
3 | dfnot 1361 | . 2 ⊢ (¬ 𝜓 ↔ (𝜓 → ⊥)) | |
4 | 2, 3 | sylibr 133 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ⊥wfal 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 |
This theorem is referenced by: genpdisj 7464 cauappcvgprlemdisj 7592 caucvgprlemdisj 7615 caucvgprprlemdisj 7643 suplocexprlemdisj 7661 suplocexprlemub 7664 suplocsrlem 7749 resqrexlemgt0 10962 resqrexlemoverl 10963 leabs 11016 climge0 11266 isprm5lem 12073 ennnfonelemex 12347 dedekindeu 13241 dedekindicclemicc 13250 pw1nct 13883 |
Copyright terms: Public domain | W3C validator |