![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inegd | GIF version |
Description: Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
inegd.1 | ⊢ ((𝜑 ∧ 𝜓) → ⊥) |
Ref | Expression |
---|---|
inegd | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inegd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ⊥) | |
2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → ⊥)) |
3 | dfnot 1382 | . 2 ⊢ (¬ 𝜓 ↔ (𝜓 → ⊥)) | |
4 | 2, 3 | sylibr 134 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ⊥wfal 1369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 |
This theorem is referenced by: genpdisj 7585 cauappcvgprlemdisj 7713 caucvgprlemdisj 7736 caucvgprprlemdisj 7764 suplocexprlemdisj 7782 suplocexprlemub 7785 suplocsrlem 7870 resqrexlemgt0 11167 resqrexlemoverl 11168 leabs 11221 climge0 11471 isprm5lem 12282 ennnfonelemex 12574 dedekindeu 14802 dedekindicclemicc 14811 pw1nct 15563 |
Copyright terms: Public domain | W3C validator |