![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > inegd | GIF version |
Description: Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
inegd.1 | ⊢ ((𝜑 ∧ 𝜓) → ⊥) |
Ref | Expression |
---|---|
inegd | ⊢ (𝜑 → ¬ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inegd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ⊥) | |
2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → ⊥)) |
3 | dfnot 1382 | . 2 ⊢ (¬ 𝜓 ↔ (𝜓 → ⊥)) | |
4 | 2, 3 | sylibr 134 | 1 ⊢ (𝜑 → ¬ 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ⊥wfal 1369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 |
This theorem is referenced by: genpdisj 7552 cauappcvgprlemdisj 7680 caucvgprlemdisj 7703 caucvgprprlemdisj 7731 suplocexprlemdisj 7749 suplocexprlemub 7752 suplocsrlem 7837 resqrexlemgt0 11061 resqrexlemoverl 11062 leabs 11115 climge0 11365 isprm5lem 12173 ennnfonelemex 12465 dedekindeu 14558 dedekindicclemicc 14567 pw1nct 15211 |
Copyright terms: Public domain | W3C validator |