| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inegd | GIF version | ||
| Description: Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| inegd.1 | ⊢ ((𝜑 ∧ 𝜓) → ⊥) |
| Ref | Expression |
|---|---|
| inegd | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inegd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ⊥) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → ⊥)) |
| 3 | dfnot 1382 | . 2 ⊢ (¬ 𝜓 ↔ (𝜓 → ⊥)) | |
| 4 | 2, 3 | sylibr 134 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ⊥wfal 1369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 |
| This theorem is referenced by: genpdisj 7609 cauappcvgprlemdisj 7737 caucvgprlemdisj 7760 caucvgprprlemdisj 7788 suplocexprlemdisj 7806 suplocexprlemub 7809 suplocsrlem 7894 resqrexlemgt0 11204 resqrexlemoverl 11205 leabs 11258 climge0 11509 isprm5lem 12336 ennnfonelemex 12658 dedekindeu 14967 dedekindicclemicc 14976 pw1nct 15758 |
| Copyright terms: Public domain | W3C validator |