| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > inegd | GIF version | ||
| Description: Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.) |
| Ref | Expression |
|---|---|
| inegd.1 | ⊢ ((𝜑 ∧ 𝜓) → ⊥) |
| Ref | Expression |
|---|---|
| inegd | ⊢ (𝜑 → ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inegd.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ⊥) | |
| 2 | 1 | ex 115 | . 2 ⊢ (𝜑 → (𝜓 → ⊥)) |
| 3 | dfnot 1382 | . 2 ⊢ (¬ 𝜓 ↔ (𝜓 → ⊥)) | |
| 4 | 2, 3 | sylibr 134 | 1 ⊢ (𝜑 → ¬ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ⊥wfal 1369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 |
| This theorem is referenced by: genpdisj 7607 cauappcvgprlemdisj 7735 caucvgprlemdisj 7758 caucvgprprlemdisj 7786 suplocexprlemdisj 7804 suplocexprlemub 7807 suplocsrlem 7892 resqrexlemgt0 11202 resqrexlemoverl 11203 leabs 11256 climge0 11507 isprm5lem 12334 ennnfonelemex 12656 dedekindeu 14943 dedekindicclemicc 14952 pw1nct 15734 |
| Copyright terms: Public domain | W3C validator |