ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difin GIF version

Theorem difin 3396
Description: Difference with intersection. Theorem 33 of [Suppes] p. 29. (Contributed by NM, 31-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
difin (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)

Proof of Theorem difin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-in2 616 . . . . . . . 8 (¬ (𝑥𝐴𝑥𝐵) → ((𝑥𝐴𝑥𝐵) → ⊥))
21expd 258 . . . . . . 7 (¬ (𝑥𝐴𝑥𝐵) → (𝑥𝐴 → (𝑥𝐵 → ⊥)))
3 dfnot 1382 . . . . . . 7 𝑥𝐵 ↔ (𝑥𝐵 → ⊥))
42, 3imbitrrdi 162 . . . . . 6 (¬ (𝑥𝐴𝑥𝐵) → (𝑥𝐴 → ¬ 𝑥𝐵))
54com12 30 . . . . 5 (𝑥𝐴 → (¬ (𝑥𝐴𝑥𝐵) → ¬ 𝑥𝐵))
65imdistani 445 . . . 4 ((𝑥𝐴 ∧ ¬ (𝑥𝐴𝑥𝐵)) → (𝑥𝐴 ∧ ¬ 𝑥𝐵))
7 simpr 110 . . . . . 6 ((𝑥𝐴𝑥𝐵) → 𝑥𝐵)
87con3i 633 . . . . 5 𝑥𝐵 → ¬ (𝑥𝐴𝑥𝐵))
98anim2i 342 . . . 4 ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → (𝑥𝐴 ∧ ¬ (𝑥𝐴𝑥𝐵)))
106, 9impbii 126 . . 3 ((𝑥𝐴 ∧ ¬ (𝑥𝐴𝑥𝐵)) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
11 eldif 3162 . . . 4 (𝑥 ∈ (𝐴 ∖ (𝐴𝐵)) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴𝐵)))
12 elin 3342 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
1312notbii 669 . . . . 5 𝑥 ∈ (𝐴𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
1413anbi2i 457 . . . 4 ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴𝐵)) ↔ (𝑥𝐴 ∧ ¬ (𝑥𝐴𝑥𝐵)))
1511, 14bitri 184 . . 3 (𝑥 ∈ (𝐴 ∖ (𝐴𝐵)) ↔ (𝑥𝐴 ∧ ¬ (𝑥𝐴𝑥𝐵)))
16 eldif 3162 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
1710, 15, 163bitr4i 212 . 2 (𝑥 ∈ (𝐴 ∖ (𝐴𝐵)) ↔ 𝑥 ∈ (𝐴𝐵))
1817eqriv 2190 1 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1364  wfal 1369  wcel 2164  cdif 3150  cin 3152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-in 3159
This theorem is referenced by:  inssddif  3400  symdif1  3424  notrab  3436  disjdif2  3525  unfiin  6982  bj-charfundcALT  15301
  Copyright terms: Public domain W3C validator