| Step | Hyp | Ref
 | Expression | 
| 1 |   | ax-in2 616 | 
. . . . . . . 8
⊢ (¬
(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → ⊥)) | 
| 2 | 1 | expd 258 | 
. . . . . . 7
⊢ (¬
(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 → ⊥))) | 
| 3 |   | dfnot 1382 | 
. . . . . . 7
⊢ (¬
𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐵 → ⊥)) | 
| 4 | 2, 3 | imbitrrdi 162 | 
. . . . . 6
⊢ (¬
(𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | 
| 5 | 4 | com12 30 | 
. . . . 5
⊢ (𝑥 ∈ 𝐴 → (¬ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → ¬ 𝑥 ∈ 𝐵)) | 
| 6 | 5 | imdistani 445 | 
. . . 4
⊢ ((𝑥 ∈ 𝐴 ∧ ¬ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) → (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | 
| 7 |   | simpr 110 | 
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | 
| 8 | 7 | con3i 633 | 
. . . . 5
⊢ (¬
𝑥 ∈ 𝐵 → ¬ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | 
| 9 | 8 | anim2i 342 | 
. . . 4
⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) → (𝑥 ∈ 𝐴 ∧ ¬ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) | 
| 10 | 6, 9 | impbii 126 | 
. . 3
⊢ ((𝑥 ∈ 𝐴 ∧ ¬ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | 
| 11 |   | eldif 3166 | 
. . . 4
⊢ (𝑥 ∈ (𝐴 ∖ (𝐴 ∩ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐴 ∩ 𝐵))) | 
| 12 |   | elin 3346 | 
. . . . . 6
⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | 
| 13 | 12 | notbii 669 | 
. . . . 5
⊢ (¬
𝑥 ∈ (𝐴 ∩ 𝐵) ↔ ¬ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | 
| 14 | 13 | anbi2i 457 | 
. . . 4
⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ (𝐴 ∩ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ ¬ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) | 
| 15 | 11, 14 | bitri 184 | 
. . 3
⊢ (𝑥 ∈ (𝐴 ∖ (𝐴 ∩ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ ¬ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵))) | 
| 16 |   | eldif 3166 | 
. . 3
⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | 
| 17 | 10, 15, 16 | 3bitr4i 212 | 
. 2
⊢ (𝑥 ∈ (𝐴 ∖ (𝐴 ∩ 𝐵)) ↔ 𝑥 ∈ (𝐴 ∖ 𝐵)) | 
| 18 | 17 | eqriv 2193 | 
1
⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) |