ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difin GIF version

Theorem difin 3359
Description: Difference with intersection. Theorem 33 of [Suppes] p. 29. (Contributed by NM, 31-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
difin (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)

Proof of Theorem difin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-in2 605 . . . . . . . 8 (¬ (𝑥𝐴𝑥𝐵) → ((𝑥𝐴𝑥𝐵) → ⊥))
21expd 256 . . . . . . 7 (¬ (𝑥𝐴𝑥𝐵) → (𝑥𝐴 → (𝑥𝐵 → ⊥)))
3 dfnot 1361 . . . . . . 7 𝑥𝐵 ↔ (𝑥𝐵 → ⊥))
42, 3syl6ibr 161 . . . . . 6 (¬ (𝑥𝐴𝑥𝐵) → (𝑥𝐴 → ¬ 𝑥𝐵))
54com12 30 . . . . 5 (𝑥𝐴 → (¬ (𝑥𝐴𝑥𝐵) → ¬ 𝑥𝐵))
65imdistani 442 . . . 4 ((𝑥𝐴 ∧ ¬ (𝑥𝐴𝑥𝐵)) → (𝑥𝐴 ∧ ¬ 𝑥𝐵))
7 simpr 109 . . . . . 6 ((𝑥𝐴𝑥𝐵) → 𝑥𝐵)
87con3i 622 . . . . 5 𝑥𝐵 → ¬ (𝑥𝐴𝑥𝐵))
98anim2i 340 . . . 4 ((𝑥𝐴 ∧ ¬ 𝑥𝐵) → (𝑥𝐴 ∧ ¬ (𝑥𝐴𝑥𝐵)))
106, 9impbii 125 . . 3 ((𝑥𝐴 ∧ ¬ (𝑥𝐴𝑥𝐵)) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
11 eldif 3125 . . . 4 (𝑥 ∈ (𝐴 ∖ (𝐴𝐵)) ↔ (𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴𝐵)))
12 elin 3305 . . . . . 6 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
1312notbii 658 . . . . 5 𝑥 ∈ (𝐴𝐵) ↔ ¬ (𝑥𝐴𝑥𝐵))
1413anbi2i 453 . . . 4 ((𝑥𝐴 ∧ ¬ 𝑥 ∈ (𝐴𝐵)) ↔ (𝑥𝐴 ∧ ¬ (𝑥𝐴𝑥𝐵)))
1511, 14bitri 183 . . 3 (𝑥 ∈ (𝐴 ∖ (𝐴𝐵)) ↔ (𝑥𝐴 ∧ ¬ (𝑥𝐴𝑥𝐵)))
16 eldif 3125 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
1710, 15, 163bitr4i 211 . 2 (𝑥 ∈ (𝐴 ∖ (𝐴𝐵)) ↔ 𝑥 ∈ (𝐴𝐵))
1817eqriv 2162 1 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1343  wfal 1348  wcel 2136  cdif 3113  cin 3115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-in 3122
This theorem is referenced by:  inssddif  3363  symdif1  3387  notrab  3399  disjdif2  3487  unfiin  6891  bj-charfundcALT  13691
  Copyright terms: Public domain W3C validator