ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recvguniq GIF version

Theorem recvguniq 10995
Description: Limits are unique. (Contributed by Jim Kingdon, 7-Aug-2021.)
Hypotheses
Ref Expression
recvguniq.f (𝜑𝐹:ℕ⟶ℝ)
recvguniq.lre (𝜑𝐿 ∈ ℝ)
recvguniq.l (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)))
recvguniq.mre (𝜑𝑀 ∈ ℝ)
recvguniq.m (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥)))
Assertion
Ref Expression
recvguniq (𝜑𝐿 = 𝑀)
Distinct variable groups:   𝑗,𝐹,𝑥   𝑗,𝐿,𝑘,𝑥   𝑗,𝑀,𝑘,𝑥   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑗)   𝐹(𝑘)

Proof of Theorem recvguniq
StepHypRef Expression
1 recvguniq.lre . . . . 5 (𝜑𝐿 ∈ ℝ)
2 recvguniq.mre . . . . 5 (𝜑𝑀 ∈ ℝ)
3 reaplt 8539 . . . . 5 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿 # 𝑀 ↔ (𝐿 < 𝑀𝑀 < 𝐿)))
41, 2, 3syl2anc 411 . . . 4 (𝜑 → (𝐿 # 𝑀 ↔ (𝐿 < 𝑀𝑀 < 𝐿)))
5 oveq2 5878 . . . . . . . . . . . 12 (𝑥 = ((𝑀𝐿) / 2) → (𝐿 + 𝑥) = (𝐿 + ((𝑀𝐿) / 2)))
65breq2d 4013 . . . . . . . . . . 11 (𝑥 = ((𝑀𝐿) / 2) → ((𝐹𝑘) < (𝐿 + 𝑥) ↔ (𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2))))
7 oveq2 5878 . . . . . . . . . . . 12 (𝑥 = ((𝑀𝐿) / 2) → ((𝐹𝑘) + 𝑥) = ((𝐹𝑘) + ((𝑀𝐿) / 2)))
87breq2d 4013 . . . . . . . . . . 11 (𝑥 = ((𝑀𝐿) / 2) → (𝐿 < ((𝐹𝑘) + 𝑥) ↔ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))
96, 8anbi12d 473 . . . . . . . . . 10 (𝑥 = ((𝑀𝐿) / 2) → (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))
10 oveq2 5878 . . . . . . . . . . . 12 (𝑥 = ((𝑀𝐿) / 2) → (𝑀 + 𝑥) = (𝑀 + ((𝑀𝐿) / 2)))
1110breq2d 4013 . . . . . . . . . . 11 (𝑥 = ((𝑀𝐿) / 2) → ((𝐹𝑘) < (𝑀 + 𝑥) ↔ (𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2))))
127breq2d 4013 . . . . . . . . . . 11 (𝑥 = ((𝑀𝐿) / 2) → (𝑀 < ((𝐹𝑘) + 𝑥) ↔ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))
1311, 12anbi12d 473 . . . . . . . . . 10 (𝑥 = ((𝑀𝐿) / 2) → (((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))
149, 13anbi12d 473 . . . . . . . . 9 (𝑥 = ((𝑀𝐿) / 2) → ((((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))))
1514rexbidv 2478 . . . . . . . 8 (𝑥 = ((𝑀𝐿) / 2) → (∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))))
16 recvguniq.l . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)))
17 recvguniq.m . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥)))
18 r19.26 2603 . . . . . . . . . . . 12 (∀𝑥 ∈ ℝ+ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
1916, 17, 18sylanbrc 417 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ℝ+ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
20 nnuz 9557 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
2120rexanuz2 10991 . . . . . . . . . . . 12 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2221ralbii 2483 . . . . . . . . . . 11 (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ ∀𝑥 ∈ ℝ+ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2319, 22sylibr 134 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2420r19.2uz 10993 . . . . . . . . . . 11 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) → ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2524ralimi 2540 . . . . . . . . . 10 (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) → ∀𝑥 ∈ ℝ+𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2623, 25syl 14 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ ℝ+𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2726adantr 276 . . . . . . . 8 ((𝜑𝐿 < 𝑀) → ∀𝑥 ∈ ℝ+𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
28 simpr 110 . . . . . . . . . 10 ((𝜑𝐿 < 𝑀) → 𝐿 < 𝑀)
291adantr 276 . . . . . . . . . . 11 ((𝜑𝐿 < 𝑀) → 𝐿 ∈ ℝ)
302adantr 276 . . . . . . . . . . 11 ((𝜑𝐿 < 𝑀) → 𝑀 ∈ ℝ)
31 difrp 9686 . . . . . . . . . . 11 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿 < 𝑀 ↔ (𝑀𝐿) ∈ ℝ+))
3229, 30, 31syl2anc 411 . . . . . . . . . 10 ((𝜑𝐿 < 𝑀) → (𝐿 < 𝑀 ↔ (𝑀𝐿) ∈ ℝ+))
3328, 32mpbid 147 . . . . . . . . 9 ((𝜑𝐿 < 𝑀) → (𝑀𝐿) ∈ ℝ+)
3433rphalfcld 9703 . . . . . . . 8 ((𝜑𝐿 < 𝑀) → ((𝑀𝐿) / 2) ∈ ℝ+)
3515, 27, 34rspcdva 2846 . . . . . . 7 ((𝜑𝐿 < 𝑀) → ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))
36 recvguniq.f . . . . . . . . 9 (𝜑𝐹:ℕ⟶ℝ)
3736ad2antrr 488 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → 𝐹:ℕ⟶ℝ)
382ad2antrr 488 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → 𝑀 ∈ ℝ)
391ad2antrr 488 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → 𝐿 ∈ ℝ)
40 simprl 529 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → 𝑘 ∈ ℕ)
41 simprrr 540 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))) → 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))
4241adantl 277 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))
43 simprll 537 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))) → (𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)))
4443adantl 277 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → (𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)))
4537, 38, 39, 40, 42, 44recvguniqlem 10994 . . . . . . 7 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → ⊥)
4635, 45rexlimddv 2599 . . . . . 6 ((𝜑𝐿 < 𝑀) → ⊥)
4746ex 115 . . . . 5 (𝜑 → (𝐿 < 𝑀 → ⊥))
48 oveq2 5878 . . . . . . . . . . . 12 (𝑥 = ((𝐿𝑀) / 2) → (𝐿 + 𝑥) = (𝐿 + ((𝐿𝑀) / 2)))
4948breq2d 4013 . . . . . . . . . . 11 (𝑥 = ((𝐿𝑀) / 2) → ((𝐹𝑘) < (𝐿 + 𝑥) ↔ (𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2))))
50 oveq2 5878 . . . . . . . . . . . 12 (𝑥 = ((𝐿𝑀) / 2) → ((𝐹𝑘) + 𝑥) = ((𝐹𝑘) + ((𝐿𝑀) / 2)))
5150breq2d 4013 . . . . . . . . . . 11 (𝑥 = ((𝐿𝑀) / 2) → (𝐿 < ((𝐹𝑘) + 𝑥) ↔ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))
5249, 51anbi12d 473 . . . . . . . . . 10 (𝑥 = ((𝐿𝑀) / 2) → (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))
53 oveq2 5878 . . . . . . . . . . . 12 (𝑥 = ((𝐿𝑀) / 2) → (𝑀 + 𝑥) = (𝑀 + ((𝐿𝑀) / 2)))
5453breq2d 4013 . . . . . . . . . . 11 (𝑥 = ((𝐿𝑀) / 2) → ((𝐹𝑘) < (𝑀 + 𝑥) ↔ (𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2))))
5550breq2d 4013 . . . . . . . . . . 11 (𝑥 = ((𝐿𝑀) / 2) → (𝑀 < ((𝐹𝑘) + 𝑥) ↔ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))
5654, 55anbi12d 473 . . . . . . . . . 10 (𝑥 = ((𝐿𝑀) / 2) → (((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))
5752, 56anbi12d 473 . . . . . . . . 9 (𝑥 = ((𝐿𝑀) / 2) → ((((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))))
5857rexbidv 2478 . . . . . . . 8 (𝑥 = ((𝐿𝑀) / 2) → (∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))))
5926adantr 276 . . . . . . . 8 ((𝜑𝑀 < 𝐿) → ∀𝑥 ∈ ℝ+𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
60 difrp 9686 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 < 𝐿 ↔ (𝐿𝑀) ∈ ℝ+))
612, 1, 60syl2anc 411 . . . . . . . . . 10 (𝜑 → (𝑀 < 𝐿 ↔ (𝐿𝑀) ∈ ℝ+))
6261biimpa 296 . . . . . . . . 9 ((𝜑𝑀 < 𝐿) → (𝐿𝑀) ∈ ℝ+)
6362rphalfcld 9703 . . . . . . . 8 ((𝜑𝑀 < 𝐿) → ((𝐿𝑀) / 2) ∈ ℝ+)
6458, 59, 63rspcdva 2846 . . . . . . 7 ((𝜑𝑀 < 𝐿) → ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))
6536ad2antrr 488 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → 𝐹:ℕ⟶ℝ)
661ad2antrr 488 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → 𝐿 ∈ ℝ)
672ad2antrr 488 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → 𝑀 ∈ ℝ)
68 simprl 529 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → 𝑘 ∈ ℕ)
69 simprlr 538 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))) → 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))
7069adantl 277 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))
71 simprrl 539 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))) → (𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)))
7271adantl 277 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → (𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)))
7365, 66, 67, 68, 70, 72recvguniqlem 10994 . . . . . . 7 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → ⊥)
7464, 73rexlimddv 2599 . . . . . 6 ((𝜑𝑀 < 𝐿) → ⊥)
7574ex 115 . . . . 5 (𝜑 → (𝑀 < 𝐿 → ⊥))
7647, 75jaod 717 . . . 4 (𝜑 → ((𝐿 < 𝑀𝑀 < 𝐿) → ⊥))
774, 76sylbid 150 . . 3 (𝜑 → (𝐿 # 𝑀 → ⊥))
78 dfnot 1371 . . 3 𝐿 # 𝑀 ↔ (𝐿 # 𝑀 → ⊥))
7977, 78sylibr 134 . 2 (𝜑 → ¬ 𝐿 # 𝑀)
801recnd 7980 . . 3 (𝜑𝐿 ∈ ℂ)
812recnd 7980 . . 3 (𝜑𝑀 ∈ ℂ)
82 apti 8573 . . 3 ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐿 = 𝑀 ↔ ¬ 𝐿 # 𝑀))
8380, 81, 82syl2anc 411 . 2 (𝜑 → (𝐿 = 𝑀 ↔ ¬ 𝐿 # 𝑀))
8479, 83mpbird 167 1 (𝜑𝐿 = 𝑀)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wfal 1358  wcel 2148  wral 2455  wrex 2456   class class class wbr 4001  wf 5209  cfv 5213  (class class class)co 5870  cc 7804  cr 7805  1c1 7807   + caddc 7809   < clt 7986  cmin 8122   # cap 8532   / cdiv 8623  cn 8913  2c2 8964  cuz 9522  +crp 9647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4119  ax-pow 4172  ax-pr 4207  ax-un 4431  ax-setind 4534  ax-cnex 7897  ax-resscn 7898  ax-1cn 7899  ax-1re 7900  ax-icn 7901  ax-addcl 7902  ax-addrcl 7903  ax-mulcl 7904  ax-mulrcl 7905  ax-addcom 7906  ax-mulcom 7907  ax-addass 7908  ax-mulass 7909  ax-distr 7910  ax-i2m1 7911  ax-0lt1 7912  ax-1rid 7913  ax-0id 7914  ax-rnegex 7915  ax-precex 7916  ax-cnre 7917  ax-pre-ltirr 7918  ax-pre-ltwlin 7919  ax-pre-lttrn 7920  ax-pre-apti 7921  ax-pre-ltadd 7922  ax-pre-mulgt0 7923  ax-pre-mulext 7924
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3809  df-int 3844  df-br 4002  df-opab 4063  df-mpt 4064  df-id 4291  df-po 4294  df-iso 4295  df-xp 4630  df-rel 4631  df-cnv 4632  df-co 4633  df-dm 4634  df-rn 4635  df-res 4636  df-ima 4637  df-iota 5175  df-fun 5215  df-fn 5216  df-f 5217  df-fv 5221  df-riota 5826  df-ov 5873  df-oprab 5874  df-mpo 5875  df-pnf 7988  df-mnf 7989  df-xr 7990  df-ltxr 7991  df-le 7992  df-sub 8124  df-neg 8125  df-reap 8526  df-ap 8533  df-div 8624  df-inn 8914  df-2 8972  df-n0 9171  df-z 9248  df-uz 9523  df-rp 9648
This theorem is referenced by:  resqrexlemsqa  11024
  Copyright terms: Public domain W3C validator