ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recvguniq GIF version

Theorem recvguniq 11248
Description: Limits are unique. (Contributed by Jim Kingdon, 7-Aug-2021.)
Hypotheses
Ref Expression
recvguniq.f (𝜑𝐹:ℕ⟶ℝ)
recvguniq.lre (𝜑𝐿 ∈ ℝ)
recvguniq.l (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)))
recvguniq.mre (𝜑𝑀 ∈ ℝ)
recvguniq.m (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥)))
Assertion
Ref Expression
recvguniq (𝜑𝐿 = 𝑀)
Distinct variable groups:   𝑗,𝐹,𝑥   𝑗,𝐿,𝑘,𝑥   𝑗,𝑀,𝑘,𝑥   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑗)   𝐹(𝑘)

Proof of Theorem recvguniq
StepHypRef Expression
1 recvguniq.lre . . . . 5 (𝜑𝐿 ∈ ℝ)
2 recvguniq.mre . . . . 5 (𝜑𝑀 ∈ ℝ)
3 reaplt 8660 . . . . 5 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿 # 𝑀 ↔ (𝐿 < 𝑀𝑀 < 𝐿)))
41, 2, 3syl2anc 411 . . . 4 (𝜑 → (𝐿 # 𝑀 ↔ (𝐿 < 𝑀𝑀 < 𝐿)))
5 oveq2 5951 . . . . . . . . . . . 12 (𝑥 = ((𝑀𝐿) / 2) → (𝐿 + 𝑥) = (𝐿 + ((𝑀𝐿) / 2)))
65breq2d 4055 . . . . . . . . . . 11 (𝑥 = ((𝑀𝐿) / 2) → ((𝐹𝑘) < (𝐿 + 𝑥) ↔ (𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2))))
7 oveq2 5951 . . . . . . . . . . . 12 (𝑥 = ((𝑀𝐿) / 2) → ((𝐹𝑘) + 𝑥) = ((𝐹𝑘) + ((𝑀𝐿) / 2)))
87breq2d 4055 . . . . . . . . . . 11 (𝑥 = ((𝑀𝐿) / 2) → (𝐿 < ((𝐹𝑘) + 𝑥) ↔ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))
96, 8anbi12d 473 . . . . . . . . . 10 (𝑥 = ((𝑀𝐿) / 2) → (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))
10 oveq2 5951 . . . . . . . . . . . 12 (𝑥 = ((𝑀𝐿) / 2) → (𝑀 + 𝑥) = (𝑀 + ((𝑀𝐿) / 2)))
1110breq2d 4055 . . . . . . . . . . 11 (𝑥 = ((𝑀𝐿) / 2) → ((𝐹𝑘) < (𝑀 + 𝑥) ↔ (𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2))))
127breq2d 4055 . . . . . . . . . . 11 (𝑥 = ((𝑀𝐿) / 2) → (𝑀 < ((𝐹𝑘) + 𝑥) ↔ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))
1311, 12anbi12d 473 . . . . . . . . . 10 (𝑥 = ((𝑀𝐿) / 2) → (((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))
149, 13anbi12d 473 . . . . . . . . 9 (𝑥 = ((𝑀𝐿) / 2) → ((((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))))
1514rexbidv 2506 . . . . . . . 8 (𝑥 = ((𝑀𝐿) / 2) → (∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))))
16 recvguniq.l . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)))
17 recvguniq.m . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥)))
18 r19.26 2631 . . . . . . . . . . . 12 (∀𝑥 ∈ ℝ+ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
1916, 17, 18sylanbrc 417 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ℝ+ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
20 nnuz 9683 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
2120rexanuz2 11244 . . . . . . . . . . . 12 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2221ralbii 2511 . . . . . . . . . . 11 (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ ∀𝑥 ∈ ℝ+ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2319, 22sylibr 134 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2420r19.2uz 11246 . . . . . . . . . . 11 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) → ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2524ralimi 2568 . . . . . . . . . 10 (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) → ∀𝑥 ∈ ℝ+𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2623, 25syl 14 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ ℝ+𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2726adantr 276 . . . . . . . 8 ((𝜑𝐿 < 𝑀) → ∀𝑥 ∈ ℝ+𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
28 simpr 110 . . . . . . . . . 10 ((𝜑𝐿 < 𝑀) → 𝐿 < 𝑀)
291adantr 276 . . . . . . . . . . 11 ((𝜑𝐿 < 𝑀) → 𝐿 ∈ ℝ)
302adantr 276 . . . . . . . . . . 11 ((𝜑𝐿 < 𝑀) → 𝑀 ∈ ℝ)
31 difrp 9813 . . . . . . . . . . 11 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿 < 𝑀 ↔ (𝑀𝐿) ∈ ℝ+))
3229, 30, 31syl2anc 411 . . . . . . . . . 10 ((𝜑𝐿 < 𝑀) → (𝐿 < 𝑀 ↔ (𝑀𝐿) ∈ ℝ+))
3328, 32mpbid 147 . . . . . . . . 9 ((𝜑𝐿 < 𝑀) → (𝑀𝐿) ∈ ℝ+)
3433rphalfcld 9830 . . . . . . . 8 ((𝜑𝐿 < 𝑀) → ((𝑀𝐿) / 2) ∈ ℝ+)
3515, 27, 34rspcdva 2881 . . . . . . 7 ((𝜑𝐿 < 𝑀) → ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))
36 recvguniq.f . . . . . . . . 9 (𝜑𝐹:ℕ⟶ℝ)
3736ad2antrr 488 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → 𝐹:ℕ⟶ℝ)
382ad2antrr 488 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → 𝑀 ∈ ℝ)
391ad2antrr 488 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → 𝐿 ∈ ℝ)
40 simprl 529 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → 𝑘 ∈ ℕ)
41 simprrr 540 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))) → 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))
4241adantl 277 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))
43 simprll 537 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))) → (𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)))
4443adantl 277 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → (𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)))
4537, 38, 39, 40, 42, 44recvguniqlem 11247 . . . . . . 7 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → ⊥)
4635, 45rexlimddv 2627 . . . . . 6 ((𝜑𝐿 < 𝑀) → ⊥)
4746ex 115 . . . . 5 (𝜑 → (𝐿 < 𝑀 → ⊥))
48 oveq2 5951 . . . . . . . . . . . 12 (𝑥 = ((𝐿𝑀) / 2) → (𝐿 + 𝑥) = (𝐿 + ((𝐿𝑀) / 2)))
4948breq2d 4055 . . . . . . . . . . 11 (𝑥 = ((𝐿𝑀) / 2) → ((𝐹𝑘) < (𝐿 + 𝑥) ↔ (𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2))))
50 oveq2 5951 . . . . . . . . . . . 12 (𝑥 = ((𝐿𝑀) / 2) → ((𝐹𝑘) + 𝑥) = ((𝐹𝑘) + ((𝐿𝑀) / 2)))
5150breq2d 4055 . . . . . . . . . . 11 (𝑥 = ((𝐿𝑀) / 2) → (𝐿 < ((𝐹𝑘) + 𝑥) ↔ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))
5249, 51anbi12d 473 . . . . . . . . . 10 (𝑥 = ((𝐿𝑀) / 2) → (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))
53 oveq2 5951 . . . . . . . . . . . 12 (𝑥 = ((𝐿𝑀) / 2) → (𝑀 + 𝑥) = (𝑀 + ((𝐿𝑀) / 2)))
5453breq2d 4055 . . . . . . . . . . 11 (𝑥 = ((𝐿𝑀) / 2) → ((𝐹𝑘) < (𝑀 + 𝑥) ↔ (𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2))))
5550breq2d 4055 . . . . . . . . . . 11 (𝑥 = ((𝐿𝑀) / 2) → (𝑀 < ((𝐹𝑘) + 𝑥) ↔ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))
5654, 55anbi12d 473 . . . . . . . . . 10 (𝑥 = ((𝐿𝑀) / 2) → (((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))
5752, 56anbi12d 473 . . . . . . . . 9 (𝑥 = ((𝐿𝑀) / 2) → ((((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))))
5857rexbidv 2506 . . . . . . . 8 (𝑥 = ((𝐿𝑀) / 2) → (∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))))
5926adantr 276 . . . . . . . 8 ((𝜑𝑀 < 𝐿) → ∀𝑥 ∈ ℝ+𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
60 difrp 9813 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 < 𝐿 ↔ (𝐿𝑀) ∈ ℝ+))
612, 1, 60syl2anc 411 . . . . . . . . . 10 (𝜑 → (𝑀 < 𝐿 ↔ (𝐿𝑀) ∈ ℝ+))
6261biimpa 296 . . . . . . . . 9 ((𝜑𝑀 < 𝐿) → (𝐿𝑀) ∈ ℝ+)
6362rphalfcld 9830 . . . . . . . 8 ((𝜑𝑀 < 𝐿) → ((𝐿𝑀) / 2) ∈ ℝ+)
6458, 59, 63rspcdva 2881 . . . . . . 7 ((𝜑𝑀 < 𝐿) → ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))
6536ad2antrr 488 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → 𝐹:ℕ⟶ℝ)
661ad2antrr 488 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → 𝐿 ∈ ℝ)
672ad2antrr 488 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → 𝑀 ∈ ℝ)
68 simprl 529 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → 𝑘 ∈ ℕ)
69 simprlr 538 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))) → 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))
7069adantl 277 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))
71 simprrl 539 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))) → (𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)))
7271adantl 277 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → (𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)))
7365, 66, 67, 68, 70, 72recvguniqlem 11247 . . . . . . 7 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → ⊥)
7464, 73rexlimddv 2627 . . . . . 6 ((𝜑𝑀 < 𝐿) → ⊥)
7574ex 115 . . . . 5 (𝜑 → (𝑀 < 𝐿 → ⊥))
7647, 75jaod 718 . . . 4 (𝜑 → ((𝐿 < 𝑀𝑀 < 𝐿) → ⊥))
774, 76sylbid 150 . . 3 (𝜑 → (𝐿 # 𝑀 → ⊥))
78 dfnot 1390 . . 3 𝐿 # 𝑀 ↔ (𝐿 # 𝑀 → ⊥))
7977, 78sylibr 134 . 2 (𝜑 → ¬ 𝐿 # 𝑀)
801recnd 8100 . . 3 (𝜑𝐿 ∈ ℂ)
812recnd 8100 . . 3 (𝜑𝑀 ∈ ℂ)
82 apti 8694 . . 3 ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐿 = 𝑀 ↔ ¬ 𝐿 # 𝑀))
8380, 81, 82syl2anc 411 . 2 (𝜑 → (𝐿 = 𝑀 ↔ ¬ 𝐿 # 𝑀))
8479, 83mpbird 167 1 (𝜑𝐿 = 𝑀)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709   = wceq 1372  wfal 1377  wcel 2175  wral 2483  wrex 2484   class class class wbr 4043  wf 5266  cfv 5270  (class class class)co 5943  cc 7922  cr 7923  1c1 7925   + caddc 7927   < clt 8106  cmin 8242   # cap 8653   / cdiv 8744  cn 9035  2c2 9086  cuz 9647  +crp 9774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-po 4342  df-iso 4343  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-n0 9295  df-z 9372  df-uz 9648  df-rp 9775
This theorem is referenced by:  resqrexlemsqa  11277
  Copyright terms: Public domain W3C validator