ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recvguniq GIF version

Theorem recvguniq 11381
Description: Limits are unique. (Contributed by Jim Kingdon, 7-Aug-2021.)
Hypotheses
Ref Expression
recvguniq.f (𝜑𝐹:ℕ⟶ℝ)
recvguniq.lre (𝜑𝐿 ∈ ℝ)
recvguniq.l (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)))
recvguniq.mre (𝜑𝑀 ∈ ℝ)
recvguniq.m (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥)))
Assertion
Ref Expression
recvguniq (𝜑𝐿 = 𝑀)
Distinct variable groups:   𝑗,𝐹,𝑥   𝑗,𝐿,𝑘,𝑥   𝑗,𝑀,𝑘,𝑥   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑗)   𝐹(𝑘)

Proof of Theorem recvguniq
StepHypRef Expression
1 recvguniq.lre . . . . 5 (𝜑𝐿 ∈ ℝ)
2 recvguniq.mre . . . . 5 (𝜑𝑀 ∈ ℝ)
3 reaplt 8681 . . . . 5 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿 # 𝑀 ↔ (𝐿 < 𝑀𝑀 < 𝐿)))
41, 2, 3syl2anc 411 . . . 4 (𝜑 → (𝐿 # 𝑀 ↔ (𝐿 < 𝑀𝑀 < 𝐿)))
5 oveq2 5965 . . . . . . . . . . . 12 (𝑥 = ((𝑀𝐿) / 2) → (𝐿 + 𝑥) = (𝐿 + ((𝑀𝐿) / 2)))
65breq2d 4063 . . . . . . . . . . 11 (𝑥 = ((𝑀𝐿) / 2) → ((𝐹𝑘) < (𝐿 + 𝑥) ↔ (𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2))))
7 oveq2 5965 . . . . . . . . . . . 12 (𝑥 = ((𝑀𝐿) / 2) → ((𝐹𝑘) + 𝑥) = ((𝐹𝑘) + ((𝑀𝐿) / 2)))
87breq2d 4063 . . . . . . . . . . 11 (𝑥 = ((𝑀𝐿) / 2) → (𝐿 < ((𝐹𝑘) + 𝑥) ↔ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))
96, 8anbi12d 473 . . . . . . . . . 10 (𝑥 = ((𝑀𝐿) / 2) → (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))
10 oveq2 5965 . . . . . . . . . . . 12 (𝑥 = ((𝑀𝐿) / 2) → (𝑀 + 𝑥) = (𝑀 + ((𝑀𝐿) / 2)))
1110breq2d 4063 . . . . . . . . . . 11 (𝑥 = ((𝑀𝐿) / 2) → ((𝐹𝑘) < (𝑀 + 𝑥) ↔ (𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2))))
127breq2d 4063 . . . . . . . . . . 11 (𝑥 = ((𝑀𝐿) / 2) → (𝑀 < ((𝐹𝑘) + 𝑥) ↔ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))
1311, 12anbi12d 473 . . . . . . . . . 10 (𝑥 = ((𝑀𝐿) / 2) → (((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))
149, 13anbi12d 473 . . . . . . . . 9 (𝑥 = ((𝑀𝐿) / 2) → ((((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))))
1514rexbidv 2508 . . . . . . . 8 (𝑥 = ((𝑀𝐿) / 2) → (∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))))
16 recvguniq.l . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)))
17 recvguniq.m . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥)))
18 r19.26 2633 . . . . . . . . . . . 12 (∀𝑥 ∈ ℝ+ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
1916, 17, 18sylanbrc 417 . . . . . . . . . . 11 (𝜑 → ∀𝑥 ∈ ℝ+ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
20 nnuz 9704 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
2120rexanuz2 11377 . . . . . . . . . . . 12 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2221ralbii 2513 . . . . . . . . . . 11 (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ ∀𝑥 ∈ ℝ+ (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2319, 22sylibr 134 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2420r19.2uz 11379 . . . . . . . . . . 11 (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) → ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2524ralimi 2570 . . . . . . . . . 10 (∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)(((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) → ∀𝑥 ∈ ℝ+𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2623, 25syl 14 . . . . . . . . 9 (𝜑 → ∀𝑥 ∈ ℝ+𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
2726adantr 276 . . . . . . . 8 ((𝜑𝐿 < 𝑀) → ∀𝑥 ∈ ℝ+𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
28 simpr 110 . . . . . . . . . 10 ((𝜑𝐿 < 𝑀) → 𝐿 < 𝑀)
291adantr 276 . . . . . . . . . . 11 ((𝜑𝐿 < 𝑀) → 𝐿 ∈ ℝ)
302adantr 276 . . . . . . . . . . 11 ((𝜑𝐿 < 𝑀) → 𝑀 ∈ ℝ)
31 difrp 9834 . . . . . . . . . . 11 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝐿 < 𝑀 ↔ (𝑀𝐿) ∈ ℝ+))
3229, 30, 31syl2anc 411 . . . . . . . . . 10 ((𝜑𝐿 < 𝑀) → (𝐿 < 𝑀 ↔ (𝑀𝐿) ∈ ℝ+))
3328, 32mpbid 147 . . . . . . . . 9 ((𝜑𝐿 < 𝑀) → (𝑀𝐿) ∈ ℝ+)
3433rphalfcld 9851 . . . . . . . 8 ((𝜑𝐿 < 𝑀) → ((𝑀𝐿) / 2) ∈ ℝ+)
3515, 27, 34rspcdva 2886 . . . . . . 7 ((𝜑𝐿 < 𝑀) → ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))
36 recvguniq.f . . . . . . . . 9 (𝜑𝐹:ℕ⟶ℝ)
3736ad2antrr 488 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → 𝐹:ℕ⟶ℝ)
382ad2antrr 488 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → 𝑀 ∈ ℝ)
391ad2antrr 488 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → 𝐿 ∈ ℝ)
40 simprl 529 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → 𝑘 ∈ ℕ)
41 simprrr 540 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))) → 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))
4241adantl 277 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))
43 simprll 537 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2))))) → (𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)))
4443adantl 277 . . . . . . . 8 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → (𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)))
4537, 38, 39, 40, 42, 44recvguniqlem 11380 . . . . . . 7 (((𝜑𝐿 < 𝑀) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝑀𝐿) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝑀𝐿) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝑀𝐿) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝑀𝐿) / 2)))))) → ⊥)
4635, 45rexlimddv 2629 . . . . . 6 ((𝜑𝐿 < 𝑀) → ⊥)
4746ex 115 . . . . 5 (𝜑 → (𝐿 < 𝑀 → ⊥))
48 oveq2 5965 . . . . . . . . . . . 12 (𝑥 = ((𝐿𝑀) / 2) → (𝐿 + 𝑥) = (𝐿 + ((𝐿𝑀) / 2)))
4948breq2d 4063 . . . . . . . . . . 11 (𝑥 = ((𝐿𝑀) / 2) → ((𝐹𝑘) < (𝐿 + 𝑥) ↔ (𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2))))
50 oveq2 5965 . . . . . . . . . . . 12 (𝑥 = ((𝐿𝑀) / 2) → ((𝐹𝑘) + 𝑥) = ((𝐹𝑘) + ((𝐿𝑀) / 2)))
5150breq2d 4063 . . . . . . . . . . 11 (𝑥 = ((𝐿𝑀) / 2) → (𝐿 < ((𝐹𝑘) + 𝑥) ↔ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))
5249, 51anbi12d 473 . . . . . . . . . 10 (𝑥 = ((𝐿𝑀) / 2) → (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))
53 oveq2 5965 . . . . . . . . . . . 12 (𝑥 = ((𝐿𝑀) / 2) → (𝑀 + 𝑥) = (𝑀 + ((𝐿𝑀) / 2)))
5453breq2d 4063 . . . . . . . . . . 11 (𝑥 = ((𝐿𝑀) / 2) → ((𝐹𝑘) < (𝑀 + 𝑥) ↔ (𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2))))
5550breq2d 4063 . . . . . . . . . . 11 (𝑥 = ((𝐿𝑀) / 2) → (𝑀 < ((𝐹𝑘) + 𝑥) ↔ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))
5654, 55anbi12d 473 . . . . . . . . . 10 (𝑥 = ((𝐿𝑀) / 2) → (((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥)) ↔ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))
5752, 56anbi12d 473 . . . . . . . . 9 (𝑥 = ((𝐿𝑀) / 2) → ((((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))))
5857rexbidv 2508 . . . . . . . 8 (𝑥 = ((𝐿𝑀) / 2) → (∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))) ↔ ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))))
5926adantr 276 . . . . . . . 8 ((𝜑𝑀 < 𝐿) → ∀𝑥 ∈ ℝ+𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + 𝑥) ∧ 𝐿 < ((𝐹𝑘) + 𝑥)) ∧ ((𝐹𝑘) < (𝑀 + 𝑥) ∧ 𝑀 < ((𝐹𝑘) + 𝑥))))
60 difrp 9834 . . . . . . . . . . 11 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 < 𝐿 ↔ (𝐿𝑀) ∈ ℝ+))
612, 1, 60syl2anc 411 . . . . . . . . . 10 (𝜑 → (𝑀 < 𝐿 ↔ (𝐿𝑀) ∈ ℝ+))
6261biimpa 296 . . . . . . . . 9 ((𝜑𝑀 < 𝐿) → (𝐿𝑀) ∈ ℝ+)
6362rphalfcld 9851 . . . . . . . 8 ((𝜑𝑀 < 𝐿) → ((𝐿𝑀) / 2) ∈ ℝ+)
6458, 59, 63rspcdva 2886 . . . . . . 7 ((𝜑𝑀 < 𝐿) → ∃𝑘 ∈ ℕ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))
6536ad2antrr 488 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → 𝐹:ℕ⟶ℝ)
661ad2antrr 488 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → 𝐿 ∈ ℝ)
672ad2antrr 488 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → 𝑀 ∈ ℝ)
68 simprl 529 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → 𝑘 ∈ ℕ)
69 simprlr 538 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))) → 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))
7069adantl 277 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))
71 simprrl 539 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2))))) → (𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)))
7271adantl 277 . . . . . . . 8 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → (𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)))
7365, 66, 67, 68, 70, 72recvguniqlem 11380 . . . . . . 7 (((𝜑𝑀 < 𝐿) ∧ (𝑘 ∈ ℕ ∧ (((𝐹𝑘) < (𝐿 + ((𝐿𝑀) / 2)) ∧ 𝐿 < ((𝐹𝑘) + ((𝐿𝑀) / 2))) ∧ ((𝐹𝑘) < (𝑀 + ((𝐿𝑀) / 2)) ∧ 𝑀 < ((𝐹𝑘) + ((𝐿𝑀) / 2)))))) → ⊥)
7464, 73rexlimddv 2629 . . . . . 6 ((𝜑𝑀 < 𝐿) → ⊥)
7574ex 115 . . . . 5 (𝜑 → (𝑀 < 𝐿 → ⊥))
7647, 75jaod 719 . . . 4 (𝜑 → ((𝐿 < 𝑀𝑀 < 𝐿) → ⊥))
774, 76sylbid 150 . . 3 (𝜑 → (𝐿 # 𝑀 → ⊥))
78 dfnot 1391 . . 3 𝐿 # 𝑀 ↔ (𝐿 # 𝑀 → ⊥))
7977, 78sylibr 134 . 2 (𝜑 → ¬ 𝐿 # 𝑀)
801recnd 8121 . . 3 (𝜑𝐿 ∈ ℂ)
812recnd 8121 . . 3 (𝜑𝑀 ∈ ℂ)
82 apti 8715 . . 3 ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐿 = 𝑀 ↔ ¬ 𝐿 # 𝑀))
8380, 81, 82syl2anc 411 . 2 (𝜑 → (𝐿 = 𝑀 ↔ ¬ 𝐿 # 𝑀))
8479, 83mpbird 167 1 (𝜑𝐿 = 𝑀)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wfal 1378  wcel 2177  wral 2485  wrex 2486   class class class wbr 4051  wf 5276  cfv 5280  (class class class)co 5957  cc 7943  cr 7944  1c1 7946   + caddc 7948   < clt 8127  cmin 8263   # cap 8674   / cdiv 8765  cn 9056  2c2 9107  cuz 9668  +crp 9795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-po 4351  df-iso 4352  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-n0 9316  df-z 9393  df-uz 9669  df-rp 9796
This theorem is referenced by:  resqrexlemsqa  11410
  Copyright terms: Public domain W3C validator