![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmmulpi | GIF version |
Description: Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.) |
Ref | Expression |
---|---|
dmmulpi | ⊢ dom ·N = (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 4796 | . . 3 ⊢ dom ( ·o ↾ (N × N)) = ((N × N) ∩ dom ·o ) | |
2 | fnom 6298 | . . . . 5 ⊢ ·o Fn (On × On) | |
3 | fndm 5178 | . . . . 5 ⊢ ( ·o Fn (On × On) → dom ·o = (On × On)) | |
4 | 2, 3 | ax-mp 7 | . . . 4 ⊢ dom ·o = (On × On) |
5 | 4 | ineq2i 3238 | . . 3 ⊢ ((N × N) ∩ dom ·o ) = ((N × N) ∩ (On × On)) |
6 | 1, 5 | eqtri 2133 | . 2 ⊢ dom ( ·o ↾ (N × N)) = ((N × N) ∩ (On × On)) |
7 | df-mi 7056 | . . 3 ⊢ ·N = ( ·o ↾ (N × N)) | |
8 | 7 | dmeqi 4698 | . 2 ⊢ dom ·N = dom ( ·o ↾ (N × N)) |
9 | df-ni 7054 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
10 | difss 3166 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
11 | 9, 10 | eqsstri 3093 | . . . . . 6 ⊢ N ⊆ ω |
12 | omsson 4484 | . . . . . 6 ⊢ ω ⊆ On | |
13 | 11, 12 | sstri 3070 | . . . . 5 ⊢ N ⊆ On |
14 | anidm 391 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
15 | 13, 14 | mpbir 145 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
16 | xpss12 4604 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
17 | 15, 16 | ax-mp 7 | . . 3 ⊢ (N × N) ⊆ (On × On) |
18 | dfss 3049 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
19 | 17, 18 | mpbi 144 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
20 | 6, 8, 19 | 3eqtr4i 2143 | 1 ⊢ dom ·N = (N × N) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1312 ∖ cdif 3032 ∩ cin 3034 ⊆ wss 3035 ∅c0 3327 {csn 3491 Oncon0 4243 ωcom 4462 × cxp 4495 dom cdm 4497 ↾ cres 4499 Fn wfn 5074 ·o comu 6263 Ncnpi 7022 ·N cmi 7024 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-coll 4001 ax-sep 4004 ax-nul 4012 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-setind 4410 ax-iinf 4460 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-fal 1318 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ne 2281 df-ral 2393 df-rex 2394 df-reu 2395 df-rab 2397 df-v 2657 df-sbc 2877 df-csb 2970 df-dif 3037 df-un 3039 df-in 3041 df-ss 3048 df-nul 3328 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-iun 3779 df-br 3894 df-opab 3948 df-mpt 3949 df-tr 3985 df-id 4173 df-iord 4246 df-on 4248 df-suc 4251 df-iom 4463 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-f1 5084 df-fo 5085 df-f1o 5086 df-fv 5087 df-ov 5729 df-oprab 5730 df-mpo 5731 df-1st 5990 df-2nd 5991 df-recs 6154 df-irdg 6219 df-oadd 6269 df-omul 6270 df-ni 7054 df-mi 7056 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |