| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmmulpi | GIF version | ||
| Description: Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.) |
| Ref | Expression |
|---|---|
| dmmulpi | ⊢ dom ·N = (N × N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres 4979 | . . 3 ⊢ dom ( ·o ↾ (N × N)) = ((N × N) ∩ dom ·o ) | |
| 2 | fnom 6535 | . . . . 5 ⊢ ·o Fn (On × On) | |
| 3 | fndm 5372 | . . . . 5 ⊢ ( ·o Fn (On × On) → dom ·o = (On × On)) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ dom ·o = (On × On) |
| 5 | 4 | ineq2i 3370 | . . 3 ⊢ ((N × N) ∩ dom ·o ) = ((N × N) ∩ (On × On)) |
| 6 | 1, 5 | eqtri 2225 | . 2 ⊢ dom ( ·o ↾ (N × N)) = ((N × N) ∩ (On × On)) |
| 7 | df-mi 7418 | . . 3 ⊢ ·N = ( ·o ↾ (N × N)) | |
| 8 | 7 | dmeqi 4878 | . 2 ⊢ dom ·N = dom ( ·o ↾ (N × N)) |
| 9 | df-ni 7416 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
| 10 | difss 3298 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 11 | 9, 10 | eqsstri 3224 | . . . . . 6 ⊢ N ⊆ ω |
| 12 | omsson 4660 | . . . . . 6 ⊢ ω ⊆ On | |
| 13 | 11, 12 | sstri 3201 | . . . . 5 ⊢ N ⊆ On |
| 14 | anidm 396 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
| 15 | 13, 14 | mpbir 146 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
| 16 | xpss12 4781 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
| 17 | 15, 16 | ax-mp 5 | . . 3 ⊢ (N × N) ⊆ (On × On) |
| 18 | dfss 3179 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
| 19 | 17, 18 | mpbi 145 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
| 20 | 6, 8, 19 | 3eqtr4i 2235 | 1 ⊢ dom ·N = (N × N) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1372 ∖ cdif 3162 ∩ cin 3164 ⊆ wss 3165 ∅c0 3459 {csn 3632 Oncon0 4409 ωcom 4637 × cxp 4672 dom cdm 4674 ↾ cres 4676 Fn wfn 5265 ·o comu 6499 Ncnpi 7384 ·N cmi 7386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-oadd 6505 df-omul 6506 df-ni 7416 df-mi 7418 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |