Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmmulpi | GIF version |
Description: Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.) |
Ref | Expression |
---|---|
dmmulpi | ⊢ dom ·N = (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 4905 | . . 3 ⊢ dom ( ·o ↾ (N × N)) = ((N × N) ∩ dom ·o ) | |
2 | fnom 6418 | . . . . 5 ⊢ ·o Fn (On × On) | |
3 | fndm 5287 | . . . . 5 ⊢ ( ·o Fn (On × On) → dom ·o = (On × On)) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ dom ·o = (On × On) |
5 | 4 | ineq2i 3320 | . . 3 ⊢ ((N × N) ∩ dom ·o ) = ((N × N) ∩ (On × On)) |
6 | 1, 5 | eqtri 2186 | . 2 ⊢ dom ( ·o ↾ (N × N)) = ((N × N) ∩ (On × On)) |
7 | df-mi 7247 | . . 3 ⊢ ·N = ( ·o ↾ (N × N)) | |
8 | 7 | dmeqi 4805 | . 2 ⊢ dom ·N = dom ( ·o ↾ (N × N)) |
9 | df-ni 7245 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
10 | difss 3248 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
11 | 9, 10 | eqsstri 3174 | . . . . . 6 ⊢ N ⊆ ω |
12 | omsson 4590 | . . . . . 6 ⊢ ω ⊆ On | |
13 | 11, 12 | sstri 3151 | . . . . 5 ⊢ N ⊆ On |
14 | anidm 394 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
15 | 13, 14 | mpbir 145 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
16 | xpss12 4711 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
17 | 15, 16 | ax-mp 5 | . . 3 ⊢ (N × N) ⊆ (On × On) |
18 | dfss 3130 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
19 | 17, 18 | mpbi 144 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
20 | 6, 8, 19 | 3eqtr4i 2196 | 1 ⊢ dom ·N = (N × N) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1343 ∖ cdif 3113 ∩ cin 3115 ⊆ wss 3116 ∅c0 3409 {csn 3576 Oncon0 4341 ωcom 4567 × cxp 4602 dom cdm 4604 ↾ cres 4606 Fn wfn 5183 ·o comu 6382 Ncnpi 7213 ·N cmi 7215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-oadd 6388 df-omul 6389 df-ni 7245 df-mi 7247 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |