ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmmulpi GIF version

Theorem dmmulpi 7509
Description: Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.)
Assertion
Ref Expression
dmmulpi dom ·N = (N × N)

Proof of Theorem dmmulpi
StepHypRef Expression
1 dmres 5025 . . 3 dom ( ·o ↾ (N × N)) = ((N × N) ∩ dom ·o )
2 fnom 6594 . . . . 5 ·o Fn (On × On)
3 fndm 5419 . . . . 5 ( ·o Fn (On × On) → dom ·o = (On × On))
42, 3ax-mp 5 . . . 4 dom ·o = (On × On)
54ineq2i 3402 . . 3 ((N × N) ∩ dom ·o ) = ((N × N) ∩ (On × On))
61, 5eqtri 2250 . 2 dom ( ·o ↾ (N × N)) = ((N × N) ∩ (On × On))
7 df-mi 7489 . . 3 ·N = ( ·o ↾ (N × N))
87dmeqi 4923 . 2 dom ·N = dom ( ·o ↾ (N × N))
9 df-ni 7487 . . . . . . 7 N = (ω ∖ {∅})
10 difss 3330 . . . . . . 7 (ω ∖ {∅}) ⊆ ω
119, 10eqsstri 3256 . . . . . 6 N ⊆ ω
12 omsson 4704 . . . . . 6 ω ⊆ On
1311, 12sstri 3233 . . . . 5 N ⊆ On
14 anidm 396 . . . . 5 ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On)
1513, 14mpbir 146 . . . 4 (N ⊆ On ∧ N ⊆ On)
16 xpss12 4825 . . . 4 ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On))
1715, 16ax-mp 5 . . 3 (N × N) ⊆ (On × On)
18 dfss 3211 . . 3 ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On)))
1917, 18mpbi 145 . 2 (N × N) = ((N × N) ∩ (On × On))
206, 8, 193eqtr4i 2260 1 dom ·N = (N × N)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  cdif 3194  cin 3196  wss 3197  c0 3491  {csn 3666  Oncon0 4453  ωcom 4681   × cxp 4716  dom cdm 4718  cres 4720   Fn wfn 5312   ·o comu 6558  Ncnpi 7455   ·N cmi 7457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-oadd 6564  df-omul 6565  df-ni 7487  df-mi 7489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator