![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmmulpi | GIF version |
Description: Domain of multiplication on positive integers. (Contributed by NM, 26-Aug-1995.) |
Ref | Expression |
---|---|
dmmulpi | ⊢ dom ·N = (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 4930 | . . 3 ⊢ dom ( ·o ↾ (N × N)) = ((N × N) ∩ dom ·o ) | |
2 | fnom 6453 | . . . . 5 ⊢ ·o Fn (On × On) | |
3 | fndm 5317 | . . . . 5 ⊢ ( ·o Fn (On × On) → dom ·o = (On × On)) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ dom ·o = (On × On) |
5 | 4 | ineq2i 3335 | . . 3 ⊢ ((N × N) ∩ dom ·o ) = ((N × N) ∩ (On × On)) |
6 | 1, 5 | eqtri 2198 | . 2 ⊢ dom ( ·o ↾ (N × N)) = ((N × N) ∩ (On × On)) |
7 | df-mi 7307 | . . 3 ⊢ ·N = ( ·o ↾ (N × N)) | |
8 | 7 | dmeqi 4830 | . 2 ⊢ dom ·N = dom ( ·o ↾ (N × N)) |
9 | df-ni 7305 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
10 | difss 3263 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
11 | 9, 10 | eqsstri 3189 | . . . . . 6 ⊢ N ⊆ ω |
12 | omsson 4614 | . . . . . 6 ⊢ ω ⊆ On | |
13 | 11, 12 | sstri 3166 | . . . . 5 ⊢ N ⊆ On |
14 | anidm 396 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
15 | 13, 14 | mpbir 146 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
16 | xpss12 4735 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
17 | 15, 16 | ax-mp 5 | . . 3 ⊢ (N × N) ⊆ (On × On) |
18 | dfss 3145 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
19 | 17, 18 | mpbi 145 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
20 | 6, 8, 19 | 3eqtr4i 2208 | 1 ⊢ dom ·N = (N × N) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 ∖ cdif 3128 ∩ cin 3130 ⊆ wss 3131 ∅c0 3424 {csn 3594 Oncon0 4365 ωcom 4591 × cxp 4626 dom cdm 4628 ↾ cres 4630 Fn wfn 5213 ·o comu 6417 Ncnpi 7273 ·N cmi 7275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-irdg 6373 df-oadd 6423 df-omul 6424 df-ni 7305 df-mi 7307 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |