ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi5 GIF version

Theorem sbthlemi5 6801
Description: Lemma for isbth 6807. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
Assertion
Ref Expression
sbthlemi5 ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → dom 𝐻 = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔   𝑥,𝐻
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlemi5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbthlem.1 . . . . . . . . . 10 𝐴 ∈ V
2 sbthlem.2 . . . . . . . . . 10 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
31, 2sbthlem1 6797 . . . . . . . . 9 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
4 difss 3168 . . . . . . . . 9 (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴
53, 4sstri 3072 . . . . . . . 8 𝐷𝐴
6 sseq2 3087 . . . . . . . 8 (dom 𝑓 = 𝐴 → ( 𝐷 ⊆ dom 𝑓 𝐷𝐴))
75, 6mpbiri 167 . . . . . . 7 (dom 𝑓 = 𝐴 𝐷 ⊆ dom 𝑓)
8 dfss 3051 . . . . . . 7 ( 𝐷 ⊆ dom 𝑓 𝐷 = ( 𝐷 ∩ dom 𝑓))
97, 8sylib 121 . . . . . 6 (dom 𝑓 = 𝐴 𝐷 = ( 𝐷 ∩ dom 𝑓))
109uneq1d 3195 . . . . 5 (dom 𝑓 = 𝐴 → ( 𝐷 ∪ (𝐴 𝐷)) = (( 𝐷 ∩ dom 𝑓) ∪ (𝐴 𝐷)))
111, 2sbthlemi3 6799 . . . . . . . 8 ((EXMID ∧ ran 𝑔𝐴) → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) = (𝐴 𝐷))
12 imassrn 4850 . . . . . . . 8 (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ ran 𝑔
1311, 12syl6eqssr 3116 . . . . . . 7 ((EXMID ∧ ran 𝑔𝐴) → (𝐴 𝐷) ⊆ ran 𝑔)
14 dfss 3051 . . . . . . 7 ((𝐴 𝐷) ⊆ ran 𝑔 ↔ (𝐴 𝐷) = ((𝐴 𝐷) ∩ ran 𝑔))
1513, 14sylib 121 . . . . . 6 ((EXMID ∧ ran 𝑔𝐴) → (𝐴 𝐷) = ((𝐴 𝐷) ∩ ran 𝑔))
1615uneq2d 3196 . . . . 5 ((EXMID ∧ ran 𝑔𝐴) → (( 𝐷 ∩ dom 𝑓) ∪ (𝐴 𝐷)) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔)))
1710, 16sylan9eq 2167 . . . 4 ((dom 𝑓 = 𝐴 ∧ (EXMID ∧ ran 𝑔𝐴)) → ( 𝐷 ∪ (𝐴 𝐷)) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔)))
1817an12s 537 . . 3 ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → ( 𝐷 ∪ (𝐴 𝐷)) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔)))
19 sbthlem.3 . . . . 5 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
2019dmeqi 4700 . . . 4 dom 𝐻 = dom ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
21 dmun 4706 . . . 4 dom ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) = (dom (𝑓 𝐷) ∪ dom (𝑔 ↾ (𝐴 𝐷)))
22 dmres 4798 . . . . 5 dom (𝑓 𝐷) = ( 𝐷 ∩ dom 𝑓)
23 dmres 4798 . . . . . 6 dom (𝑔 ↾ (𝐴 𝐷)) = ((𝐴 𝐷) ∩ dom 𝑔)
24 df-rn 4510 . . . . . . . 8 ran 𝑔 = dom 𝑔
2524eqcomi 2119 . . . . . . 7 dom 𝑔 = ran 𝑔
2625ineq2i 3240 . . . . . 6 ((𝐴 𝐷) ∩ dom 𝑔) = ((𝐴 𝐷) ∩ ran 𝑔)
2723, 26eqtri 2135 . . . . 5 dom (𝑔 ↾ (𝐴 𝐷)) = ((𝐴 𝐷) ∩ ran 𝑔)
2822, 27uneq12i 3194 . . . 4 (dom (𝑓 𝐷) ∪ dom (𝑔 ↾ (𝐴 𝐷))) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔))
2920, 21, 283eqtri 2139 . . 3 dom 𝐻 = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔))
3018, 29syl6reqr 2166 . 2 ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → dom 𝐻 = ( 𝐷 ∪ (𝐴 𝐷)))
31 exmidexmid 4080 . . . . . . 7 (EXMIDDECID 𝑦 𝐷)
3231ralrimivw 2480 . . . . . 6 (EXMID → ∀𝑦𝐴 DECID 𝑦 𝐷)
3332biantrud 300 . . . . 5 (EXMID → ( 𝐷𝐴 ↔ ( 𝐷𝐴 ∧ ∀𝑦𝐴 DECID 𝑦 𝐷)))
34 undifdcss 6764 . . . . 5 (𝐴 = ( 𝐷 ∪ (𝐴 𝐷)) ↔ ( 𝐷𝐴 ∧ ∀𝑦𝐴 DECID 𝑦 𝐷))
3533, 34syl6rbbr 198 . . . 4 (EXMID → (𝐴 = ( 𝐷 ∪ (𝐴 𝐷)) ↔ 𝐷𝐴))
365, 35mpbiri 167 . . 3 (EXMID𝐴 = ( 𝐷 ∪ (𝐴 𝐷)))
3736adantr 272 . 2 ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → 𝐴 = ( 𝐷 ∪ (𝐴 𝐷)))
3830, 37eqtr4d 2150 1 ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → dom 𝐻 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 802   = wceq 1314  wcel 1463  {cab 2101  wral 2390  Vcvv 2657  cdif 3034  cun 3035  cin 3036  wss 3037   cuni 3702  EXMIDwem 4078  ccnv 4498  dom cdm 4499  ran crn 4500  cres 4501  cima 4502
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091
This theorem depends on definitions:  df-bi 116  df-stab 799  df-dc 803  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-rab 2399  df-v 2659  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-br 3896  df-opab 3950  df-exmid 4079  df-xp 4505  df-cnv 4507  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512
This theorem is referenced by:  sbthlemi9  6805
  Copyright terms: Public domain W3C validator