ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi5 GIF version

Theorem sbthlemi5 7027
Description: Lemma for isbth 7033. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
Assertion
Ref Expression
sbthlemi5 ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → dom 𝐻 = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔   𝑥,𝐻
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlemi5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbthlem.3 . . . . 5 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
21dmeqi 4867 . . . 4 dom 𝐻 = dom ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
3 dmun 4873 . . . 4 dom ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) = (dom (𝑓 𝐷) ∪ dom (𝑔 ↾ (𝐴 𝐷)))
4 dmres 4967 . . . . 5 dom (𝑓 𝐷) = ( 𝐷 ∩ dom 𝑓)
5 dmres 4967 . . . . . 6 dom (𝑔 ↾ (𝐴 𝐷)) = ((𝐴 𝐷) ∩ dom 𝑔)
6 df-rn 4674 . . . . . . . 8 ran 𝑔 = dom 𝑔
76eqcomi 2200 . . . . . . 7 dom 𝑔 = ran 𝑔
87ineq2i 3361 . . . . . 6 ((𝐴 𝐷) ∩ dom 𝑔) = ((𝐴 𝐷) ∩ ran 𝑔)
95, 8eqtri 2217 . . . . 5 dom (𝑔 ↾ (𝐴 𝐷)) = ((𝐴 𝐷) ∩ ran 𝑔)
104, 9uneq12i 3315 . . . 4 (dom (𝑓 𝐷) ∪ dom (𝑔 ↾ (𝐴 𝐷))) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔))
112, 3, 103eqtri 2221 . . 3 dom 𝐻 = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔))
12 sbthlem.1 . . . . . . . . . 10 𝐴 ∈ V
13 sbthlem.2 . . . . . . . . . 10 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
1412, 13sbthlem1 7023 . . . . . . . . 9 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
15 difss 3289 . . . . . . . . 9 (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴
1614, 15sstri 3192 . . . . . . . 8 𝐷𝐴
17 sseq2 3207 . . . . . . . 8 (dom 𝑓 = 𝐴 → ( 𝐷 ⊆ dom 𝑓 𝐷𝐴))
1816, 17mpbiri 168 . . . . . . 7 (dom 𝑓 = 𝐴 𝐷 ⊆ dom 𝑓)
19 dfss 3171 . . . . . . 7 ( 𝐷 ⊆ dom 𝑓 𝐷 = ( 𝐷 ∩ dom 𝑓))
2018, 19sylib 122 . . . . . 6 (dom 𝑓 = 𝐴 𝐷 = ( 𝐷 ∩ dom 𝑓))
2120uneq1d 3316 . . . . 5 (dom 𝑓 = 𝐴 → ( 𝐷 ∪ (𝐴 𝐷)) = (( 𝐷 ∩ dom 𝑓) ∪ (𝐴 𝐷)))
2212, 13sbthlemi3 7025 . . . . . . . 8 ((EXMID ∧ ran 𝑔𝐴) → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) = (𝐴 𝐷))
23 imassrn 5020 . . . . . . . 8 (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ ran 𝑔
2422, 23eqsstrrdi 3236 . . . . . . 7 ((EXMID ∧ ran 𝑔𝐴) → (𝐴 𝐷) ⊆ ran 𝑔)
25 dfss 3171 . . . . . . 7 ((𝐴 𝐷) ⊆ ran 𝑔 ↔ (𝐴 𝐷) = ((𝐴 𝐷) ∩ ran 𝑔))
2624, 25sylib 122 . . . . . 6 ((EXMID ∧ ran 𝑔𝐴) → (𝐴 𝐷) = ((𝐴 𝐷) ∩ ran 𝑔))
2726uneq2d 3317 . . . . 5 ((EXMID ∧ ran 𝑔𝐴) → (( 𝐷 ∩ dom 𝑓) ∪ (𝐴 𝐷)) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔)))
2821, 27sylan9eq 2249 . . . 4 ((dom 𝑓 = 𝐴 ∧ (EXMID ∧ ran 𝑔𝐴)) → ( 𝐷 ∪ (𝐴 𝐷)) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔)))
2928an12s 565 . . 3 ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → ( 𝐷 ∪ (𝐴 𝐷)) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔)))
3011, 29eqtr4id 2248 . 2 ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → dom 𝐻 = ( 𝐷 ∪ (𝐴 𝐷)))
31 undifdcss 6984 . . . . 5 (𝐴 = ( 𝐷 ∪ (𝐴 𝐷)) ↔ ( 𝐷𝐴 ∧ ∀𝑦𝐴 DECID 𝑦 𝐷))
32 exmidexmid 4229 . . . . . . 7 (EXMIDDECID 𝑦 𝐷)
3332ralrimivw 2571 . . . . . 6 (EXMID → ∀𝑦𝐴 DECID 𝑦 𝐷)
3433biantrud 304 . . . . 5 (EXMID → ( 𝐷𝐴 ↔ ( 𝐷𝐴 ∧ ∀𝑦𝐴 DECID 𝑦 𝐷)))
3531, 34bitr4id 199 . . . 4 (EXMID → (𝐴 = ( 𝐷 ∪ (𝐴 𝐷)) ↔ 𝐷𝐴))
3616, 35mpbiri 168 . . 3 (EXMID𝐴 = ( 𝐷 ∪ (𝐴 𝐷)))
3736adantr 276 . 2 ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → 𝐴 = ( 𝐷 ∪ (𝐴 𝐷)))
3830, 37eqtr4d 2232 1 ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → dom 𝐻 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835   = wceq 1364  wcel 2167  {cab 2182  wral 2475  Vcvv 2763  cdif 3154  cun 3155  cin 3156  wss 3157   cuni 3839  EXMIDwem 4227  ccnv 4662  dom cdm 4663  ran crn 4664  cres 4665  cima 4666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-exmid 4228  df-xp 4669  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676
This theorem is referenced by:  sbthlemi9  7031
  Copyright terms: Public domain W3C validator