Step | Hyp | Ref
| Expression |
1 | | sbthlem.3 |
. . . . 5
⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
2 | 1 | dmeqi 4805 |
. . . 4
⊢ dom 𝐻 = dom ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
3 | | dmun 4811 |
. . . 4
⊢ dom
((𝑓 ↾ ∪ 𝐷)
∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) = (dom (𝑓 ↾ ∪ 𝐷) ∪ dom (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) |
4 | | dmres 4905 |
. . . . 5
⊢ dom
(𝑓 ↾ ∪ 𝐷) =
(∪ 𝐷 ∩ dom 𝑓) |
5 | | dmres 4905 |
. . . . . 6
⊢ dom
(◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷)) = ((𝐴 ∖ ∪ 𝐷) ∩ dom ◡𝑔) |
6 | | df-rn 4615 |
. . . . . . . 8
⊢ ran 𝑔 = dom ◡𝑔 |
7 | 6 | eqcomi 2169 |
. . . . . . 7
⊢ dom ◡𝑔 = ran 𝑔 |
8 | 7 | ineq2i 3320 |
. . . . . 6
⊢ ((𝐴 ∖ ∪ 𝐷)
∩ dom ◡𝑔) = ((𝐴 ∖ ∪ 𝐷) ∩ ran 𝑔) |
9 | 5, 8 | eqtri 2186 |
. . . . 5
⊢ dom
(◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷)) = ((𝐴 ∖ ∪ 𝐷) ∩ ran 𝑔) |
10 | 4, 9 | uneq12i 3274 |
. . . 4
⊢ (dom
(𝑓 ↾ ∪ 𝐷)
∪ dom (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) = ((∪ 𝐷
∩ dom 𝑓) ∪ ((𝐴 ∖ ∪ 𝐷)
∩ ran 𝑔)) |
11 | 2, 3, 10 | 3eqtri 2190 |
. . 3
⊢ dom 𝐻 = ((∪ 𝐷
∩ dom 𝑓) ∪ ((𝐴 ∖ ∪ 𝐷)
∩ ran 𝑔)) |
12 | | sbthlem.1 |
. . . . . . . . . 10
⊢ 𝐴 ∈ V |
13 | | sbthlem.2 |
. . . . . . . . . 10
⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} |
14 | 12, 13 | sbthlem1 6922 |
. . . . . . . . 9
⊢ ∪ 𝐷
⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) |
15 | | difss 3248 |
. . . . . . . . 9
⊢ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷)))) ⊆ 𝐴 |
16 | 14, 15 | sstri 3151 |
. . . . . . . 8
⊢ ∪ 𝐷
⊆ 𝐴 |
17 | | sseq2 3166 |
. . . . . . . 8
⊢ (dom
𝑓 = 𝐴 → (∪ 𝐷 ⊆ dom 𝑓 ↔ ∪ 𝐷 ⊆ 𝐴)) |
18 | 16, 17 | mpbiri 167 |
. . . . . . 7
⊢ (dom
𝑓 = 𝐴 → ∪ 𝐷 ⊆ dom 𝑓) |
19 | | dfss 3130 |
. . . . . . 7
⊢ (∪ 𝐷
⊆ dom 𝑓 ↔ ∪ 𝐷 =
(∪ 𝐷 ∩ dom 𝑓)) |
20 | 18, 19 | sylib 121 |
. . . . . 6
⊢ (dom
𝑓 = 𝐴 → ∪ 𝐷 = (∪
𝐷 ∩ dom 𝑓)) |
21 | 20 | uneq1d 3275 |
. . . . 5
⊢ (dom
𝑓 = 𝐴 → (∪ 𝐷 ∪ (𝐴 ∖ ∪ 𝐷)) = ((∪ 𝐷
∩ dom 𝑓) ∪ (𝐴 ∖ ∪ 𝐷))) |
22 | 12, 13 | sbthlemi3 6924 |
. . . . . . . 8
⊢
((EXMID ∧ ran 𝑔 ⊆ 𝐴) → (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) = (𝐴 ∖ ∪ 𝐷)) |
23 | | imassrn 4957 |
. . . . . . . 8
⊢ (𝑔 “ (𝐵 ∖ (𝑓 “ ∪ 𝐷))) ⊆ ran 𝑔 |
24 | 22, 23 | eqsstrrdi 3195 |
. . . . . . 7
⊢
((EXMID ∧ ran 𝑔 ⊆ 𝐴) → (𝐴 ∖ ∪ 𝐷) ⊆ ran 𝑔) |
25 | | dfss 3130 |
. . . . . . 7
⊢ ((𝐴 ∖ ∪ 𝐷)
⊆ ran 𝑔 ↔ (𝐴 ∖ ∪ 𝐷) =
((𝐴 ∖ ∪ 𝐷)
∩ ran 𝑔)) |
26 | 24, 25 | sylib 121 |
. . . . . 6
⊢
((EXMID ∧ ran 𝑔 ⊆ 𝐴) → (𝐴 ∖ ∪ 𝐷) = ((𝐴 ∖ ∪ 𝐷) ∩ ran 𝑔)) |
27 | 26 | uneq2d 3276 |
. . . . 5
⊢
((EXMID ∧ ran 𝑔 ⊆ 𝐴) → ((∪
𝐷 ∩ dom 𝑓) ∪ (𝐴 ∖ ∪ 𝐷)) = ((∪ 𝐷
∩ dom 𝑓) ∪ ((𝐴 ∖ ∪ 𝐷)
∩ ran 𝑔))) |
28 | 21, 27 | sylan9eq 2219 |
. . . 4
⊢ ((dom
𝑓 = 𝐴 ∧ (EXMID ∧ ran 𝑔 ⊆ 𝐴)) → (∪
𝐷 ∪ (𝐴 ∖ ∪ 𝐷)) = ((∪ 𝐷
∩ dom 𝑓) ∪ ((𝐴 ∖ ∪ 𝐷)
∩ ran 𝑔))) |
29 | 28 | an12s 555 |
. . 3
⊢
((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔 ⊆ 𝐴)) → (∪
𝐷 ∪ (𝐴 ∖ ∪ 𝐷)) = ((∪ 𝐷
∩ dom 𝑓) ∪ ((𝐴 ∖ ∪ 𝐷)
∩ ran 𝑔))) |
30 | 11, 29 | eqtr4id 2218 |
. 2
⊢
((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔 ⊆ 𝐴)) → dom 𝐻 = (∪ 𝐷 ∪ (𝐴 ∖ ∪ 𝐷))) |
31 | | undifdcss 6888 |
. . . . 5
⊢ (𝐴 = (∪
𝐷 ∪ (𝐴 ∖ ∪ 𝐷)) ↔ (∪ 𝐷
⊆ 𝐴 ∧
∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ ∪ 𝐷)) |
32 | | exmidexmid 4175 |
. . . . . . 7
⊢
(EXMID → DECID 𝑦 ∈ ∪ 𝐷) |
33 | 32 | ralrimivw 2540 |
. . . . . 6
⊢
(EXMID → ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ ∪ 𝐷) |
34 | 33 | biantrud 302 |
. . . . 5
⊢
(EXMID → (∪ 𝐷 ⊆ 𝐴 ↔ (∪ 𝐷 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝐴 DECID 𝑦 ∈ ∪ 𝐷))) |
35 | 31, 34 | bitr4id 198 |
. . . 4
⊢
(EXMID → (𝐴 = (∪ 𝐷 ∪ (𝐴 ∖ ∪ 𝐷)) ↔ ∪ 𝐷
⊆ 𝐴)) |
36 | 16, 35 | mpbiri 167 |
. . 3
⊢
(EXMID → 𝐴 = (∪ 𝐷 ∪ (𝐴 ∖ ∪ 𝐷))) |
37 | 36 | adantr 274 |
. 2
⊢
((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔 ⊆ 𝐴)) → 𝐴 = (∪ 𝐷 ∪ (𝐴 ∖ ∪ 𝐷))) |
38 | 30, 37 | eqtr4d 2201 |
1
⊢
((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔 ⊆ 𝐴)) → dom 𝐻 = 𝐴) |