ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi5 GIF version

Theorem sbthlemi5 7020
Description: Lemma for isbth 7026. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
Assertion
Ref Expression
sbthlemi5 ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → dom 𝐻 = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔   𝑥,𝐻
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlemi5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbthlem.3 . . . . 5 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
21dmeqi 4863 . . . 4 dom 𝐻 = dom ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
3 dmun 4869 . . . 4 dom ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) = (dom (𝑓 𝐷) ∪ dom (𝑔 ↾ (𝐴 𝐷)))
4 dmres 4963 . . . . 5 dom (𝑓 𝐷) = ( 𝐷 ∩ dom 𝑓)
5 dmres 4963 . . . . . 6 dom (𝑔 ↾ (𝐴 𝐷)) = ((𝐴 𝐷) ∩ dom 𝑔)
6 df-rn 4670 . . . . . . . 8 ran 𝑔 = dom 𝑔
76eqcomi 2197 . . . . . . 7 dom 𝑔 = ran 𝑔
87ineq2i 3357 . . . . . 6 ((𝐴 𝐷) ∩ dom 𝑔) = ((𝐴 𝐷) ∩ ran 𝑔)
95, 8eqtri 2214 . . . . 5 dom (𝑔 ↾ (𝐴 𝐷)) = ((𝐴 𝐷) ∩ ran 𝑔)
104, 9uneq12i 3311 . . . 4 (dom (𝑓 𝐷) ∪ dom (𝑔 ↾ (𝐴 𝐷))) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔))
112, 3, 103eqtri 2218 . . 3 dom 𝐻 = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔))
12 sbthlem.1 . . . . . . . . . 10 𝐴 ∈ V
13 sbthlem.2 . . . . . . . . . 10 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
1412, 13sbthlem1 7016 . . . . . . . . 9 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
15 difss 3285 . . . . . . . . 9 (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴
1614, 15sstri 3188 . . . . . . . 8 𝐷𝐴
17 sseq2 3203 . . . . . . . 8 (dom 𝑓 = 𝐴 → ( 𝐷 ⊆ dom 𝑓 𝐷𝐴))
1816, 17mpbiri 168 . . . . . . 7 (dom 𝑓 = 𝐴 𝐷 ⊆ dom 𝑓)
19 dfss 3167 . . . . . . 7 ( 𝐷 ⊆ dom 𝑓 𝐷 = ( 𝐷 ∩ dom 𝑓))
2018, 19sylib 122 . . . . . 6 (dom 𝑓 = 𝐴 𝐷 = ( 𝐷 ∩ dom 𝑓))
2120uneq1d 3312 . . . . 5 (dom 𝑓 = 𝐴 → ( 𝐷 ∪ (𝐴 𝐷)) = (( 𝐷 ∩ dom 𝑓) ∪ (𝐴 𝐷)))
2212, 13sbthlemi3 7018 . . . . . . . 8 ((EXMID ∧ ran 𝑔𝐴) → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) = (𝐴 𝐷))
23 imassrn 5016 . . . . . . . 8 (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ ran 𝑔
2422, 23eqsstrrdi 3232 . . . . . . 7 ((EXMID ∧ ran 𝑔𝐴) → (𝐴 𝐷) ⊆ ran 𝑔)
25 dfss 3167 . . . . . . 7 ((𝐴 𝐷) ⊆ ran 𝑔 ↔ (𝐴 𝐷) = ((𝐴 𝐷) ∩ ran 𝑔))
2624, 25sylib 122 . . . . . 6 ((EXMID ∧ ran 𝑔𝐴) → (𝐴 𝐷) = ((𝐴 𝐷) ∩ ran 𝑔))
2726uneq2d 3313 . . . . 5 ((EXMID ∧ ran 𝑔𝐴) → (( 𝐷 ∩ dom 𝑓) ∪ (𝐴 𝐷)) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔)))
2821, 27sylan9eq 2246 . . . 4 ((dom 𝑓 = 𝐴 ∧ (EXMID ∧ ran 𝑔𝐴)) → ( 𝐷 ∪ (𝐴 𝐷)) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔)))
2928an12s 565 . . 3 ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → ( 𝐷 ∪ (𝐴 𝐷)) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔)))
3011, 29eqtr4id 2245 . 2 ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → dom 𝐻 = ( 𝐷 ∪ (𝐴 𝐷)))
31 undifdcss 6979 . . . . 5 (𝐴 = ( 𝐷 ∪ (𝐴 𝐷)) ↔ ( 𝐷𝐴 ∧ ∀𝑦𝐴 DECID 𝑦 𝐷))
32 exmidexmid 4225 . . . . . . 7 (EXMIDDECID 𝑦 𝐷)
3332ralrimivw 2568 . . . . . 6 (EXMID → ∀𝑦𝐴 DECID 𝑦 𝐷)
3433biantrud 304 . . . . 5 (EXMID → ( 𝐷𝐴 ↔ ( 𝐷𝐴 ∧ ∀𝑦𝐴 DECID 𝑦 𝐷)))
3531, 34bitr4id 199 . . . 4 (EXMID → (𝐴 = ( 𝐷 ∪ (𝐴 𝐷)) ↔ 𝐷𝐴))
3616, 35mpbiri 168 . . 3 (EXMID𝐴 = ( 𝐷 ∪ (𝐴 𝐷)))
3736adantr 276 . 2 ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → 𝐴 = ( 𝐷 ∪ (𝐴 𝐷)))
3830, 37eqtr4d 2229 1 ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → dom 𝐻 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 835   = wceq 1364  wcel 2164  {cab 2179  wral 2472  Vcvv 2760  cdif 3150  cun 3151  cin 3152  wss 3153   cuni 3835  EXMIDwem 4223  ccnv 4658  dom cdm 4659  ran crn 4660  cres 4661  cima 4662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-exmid 4224  df-xp 4665  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672
This theorem is referenced by:  sbthlemi9  7024
  Copyright terms: Public domain W3C validator