ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbthlemi5 GIF version

Theorem sbthlemi5 7128
Description: Lemma for isbth 7134. (Contributed by NM, 22-Mar-1998.)
Hypotheses
Ref Expression
sbthlem.1 𝐴 ∈ V
sbthlem.2 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
sbthlem.3 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
Assertion
Ref Expression
sbthlemi5 ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → dom 𝐻 = 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝑓   𝑥,𝑔   𝑥,𝐻
Allowed substitution hints:   𝐴(𝑓,𝑔)   𝐵(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝐻(𝑓,𝑔)

Proof of Theorem sbthlemi5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbthlem.3 . . . . 5 𝐻 = ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
21dmeqi 4924 . . . 4 dom 𝐻 = dom ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷)))
3 dmun 4930 . . . 4 dom ((𝑓 𝐷) ∪ (𝑔 ↾ (𝐴 𝐷))) = (dom (𝑓 𝐷) ∪ dom (𝑔 ↾ (𝐴 𝐷)))
4 dmres 5026 . . . . 5 dom (𝑓 𝐷) = ( 𝐷 ∩ dom 𝑓)
5 dmres 5026 . . . . . 6 dom (𝑔 ↾ (𝐴 𝐷)) = ((𝐴 𝐷) ∩ dom 𝑔)
6 df-rn 4730 . . . . . . . 8 ran 𝑔 = dom 𝑔
76eqcomi 2233 . . . . . . 7 dom 𝑔 = ran 𝑔
87ineq2i 3402 . . . . . 6 ((𝐴 𝐷) ∩ dom 𝑔) = ((𝐴 𝐷) ∩ ran 𝑔)
95, 8eqtri 2250 . . . . 5 dom (𝑔 ↾ (𝐴 𝐷)) = ((𝐴 𝐷) ∩ ran 𝑔)
104, 9uneq12i 3356 . . . 4 (dom (𝑓 𝐷) ∪ dom (𝑔 ↾ (𝐴 𝐷))) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔))
112, 3, 103eqtri 2254 . . 3 dom 𝐻 = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔))
12 sbthlem.1 . . . . . . . . . 10 𝐴 ∈ V
13 sbthlem.2 . . . . . . . . . 10 𝐷 = {𝑥 ∣ (𝑥𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓𝑥))) ⊆ (𝐴𝑥))}
1412, 13sbthlem1 7124 . . . . . . . . 9 𝐷 ⊆ (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷))))
15 difss 3330 . . . . . . . . 9 (𝐴 ∖ (𝑔 “ (𝐵 ∖ (𝑓 𝐷)))) ⊆ 𝐴
1614, 15sstri 3233 . . . . . . . 8 𝐷𝐴
17 sseq2 3248 . . . . . . . 8 (dom 𝑓 = 𝐴 → ( 𝐷 ⊆ dom 𝑓 𝐷𝐴))
1816, 17mpbiri 168 . . . . . . 7 (dom 𝑓 = 𝐴 𝐷 ⊆ dom 𝑓)
19 dfss 3211 . . . . . . 7 ( 𝐷 ⊆ dom 𝑓 𝐷 = ( 𝐷 ∩ dom 𝑓))
2018, 19sylib 122 . . . . . 6 (dom 𝑓 = 𝐴 𝐷 = ( 𝐷 ∩ dom 𝑓))
2120uneq1d 3357 . . . . 5 (dom 𝑓 = 𝐴 → ( 𝐷 ∪ (𝐴 𝐷)) = (( 𝐷 ∩ dom 𝑓) ∪ (𝐴 𝐷)))
2212, 13sbthlemi3 7126 . . . . . . . 8 ((EXMID ∧ ran 𝑔𝐴) → (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) = (𝐴 𝐷))
23 imassrn 5079 . . . . . . . 8 (𝑔 “ (𝐵 ∖ (𝑓 𝐷))) ⊆ ran 𝑔
2422, 23eqsstrrdi 3277 . . . . . . 7 ((EXMID ∧ ran 𝑔𝐴) → (𝐴 𝐷) ⊆ ran 𝑔)
25 dfss 3211 . . . . . . 7 ((𝐴 𝐷) ⊆ ran 𝑔 ↔ (𝐴 𝐷) = ((𝐴 𝐷) ∩ ran 𝑔))
2624, 25sylib 122 . . . . . 6 ((EXMID ∧ ran 𝑔𝐴) → (𝐴 𝐷) = ((𝐴 𝐷) ∩ ran 𝑔))
2726uneq2d 3358 . . . . 5 ((EXMID ∧ ran 𝑔𝐴) → (( 𝐷 ∩ dom 𝑓) ∪ (𝐴 𝐷)) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔)))
2821, 27sylan9eq 2282 . . . 4 ((dom 𝑓 = 𝐴 ∧ (EXMID ∧ ran 𝑔𝐴)) → ( 𝐷 ∪ (𝐴 𝐷)) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔)))
2928an12s 565 . . 3 ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → ( 𝐷 ∪ (𝐴 𝐷)) = (( 𝐷 ∩ dom 𝑓) ∪ ((𝐴 𝐷) ∩ ran 𝑔)))
3011, 29eqtr4id 2281 . 2 ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → dom 𝐻 = ( 𝐷 ∪ (𝐴 𝐷)))
31 undifdcss 7085 . . . . 5 (𝐴 = ( 𝐷 ∪ (𝐴 𝐷)) ↔ ( 𝐷𝐴 ∧ ∀𝑦𝐴 DECID 𝑦 𝐷))
32 exmidexmid 4280 . . . . . . 7 (EXMIDDECID 𝑦 𝐷)
3332ralrimivw 2604 . . . . . 6 (EXMID → ∀𝑦𝐴 DECID 𝑦 𝐷)
3433biantrud 304 . . . . 5 (EXMID → ( 𝐷𝐴 ↔ ( 𝐷𝐴 ∧ ∀𝑦𝐴 DECID 𝑦 𝐷)))
3531, 34bitr4id 199 . . . 4 (EXMID → (𝐴 = ( 𝐷 ∪ (𝐴 𝐷)) ↔ 𝐷𝐴))
3616, 35mpbiri 168 . . 3 (EXMID𝐴 = ( 𝐷 ∪ (𝐴 𝐷)))
3736adantr 276 . 2 ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → 𝐴 = ( 𝐷 ∪ (𝐴 𝐷)))
3830, 37eqtr4d 2265 1 ((EXMID ∧ (dom 𝑓 = 𝐴 ∧ ran 𝑔𝐴)) → dom 𝐻 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 839   = wceq 1395  wcel 2200  {cab 2215  wral 2508  Vcvv 2799  cdif 3194  cun 3195  cin 3196  wss 3197   cuni 3888  EXMIDwem 4278  ccnv 4718  dom cdm 4719  ran crn 4720  cres 4721  cima 4722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-exmid 4279  df-xp 4725  df-cnv 4727  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732
This theorem is referenced by:  sbthlemi9  7132
  Copyright terms: Public domain W3C validator