ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvcnv GIF version

Theorem cnvcnv 5031
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
cnvcnv 𝐴 = (𝐴 ∩ (V × V))

Proof of Theorem cnvcnv
StepHypRef Expression
1 relcnv 4957 . . . . 5 Rel 𝐴
2 df-rel 4586 . . . . 5 (Rel 𝐴𝐴 ⊆ (V × V))
31, 2mpbi 144 . . . 4 𝐴 ⊆ (V × V)
4 relxp 4688 . . . . 5 Rel (V × V)
5 dfrel2 5029 . . . . 5 (Rel (V × V) ↔ (V × V) = (V × V))
64, 5mpbi 144 . . . 4 (V × V) = (V × V)
73, 6sseqtrri 3159 . . 3 𝐴(V × V)
8 dfss 3112 . . 3 (𝐴(V × V) ↔ 𝐴 = (𝐴(V × V)))
97, 8mpbi 144 . 2 𝐴 = (𝐴(V × V))
10 cnvin 4986 . 2 (𝐴(V × V)) = (𝐴(V × V))
11 cnvin 4986 . . . 4 (𝐴 ∩ (V × V)) = (𝐴(V × V))
1211cnveqi 4754 . . 3 (𝐴 ∩ (V × V)) = (𝐴(V × V))
13 inss2 3324 . . . . 5 (𝐴 ∩ (V × V)) ⊆ (V × V)
14 df-rel 4586 . . . . 5 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) ⊆ (V × V))
1513, 14mpbir 145 . . . 4 Rel (𝐴 ∩ (V × V))
16 dfrel2 5029 . . . 4 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)))
1715, 16mpbi 144 . . 3 (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))
1812, 17eqtr3i 2177 . 2 (𝐴(V × V)) = (𝐴 ∩ (V × V))
199, 10, 183eqtr2i 2181 1 𝐴 = (𝐴 ∩ (V × V))
Colors of variables: wff set class
Syntax hints:   = wceq 1332  Vcvv 2709  cin 3097  wss 3098   × cxp 4577  ccnv 4578  Rel wrel 4584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-br 3962  df-opab 4022  df-xp 4585  df-rel 4586  df-cnv 4587
This theorem is referenced by:  cnvcnv2  5032  cnvcnvss  5033  structcnvcnv  12153  strslfv2d  12179
  Copyright terms: Public domain W3C validator