ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvcnv GIF version

Theorem cnvcnv 5056
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
cnvcnv 𝐴 = (𝐴 ∩ (V × V))

Proof of Theorem cnvcnv
StepHypRef Expression
1 relcnv 4982 . . . . 5 Rel 𝐴
2 df-rel 4611 . . . . 5 (Rel 𝐴𝐴 ⊆ (V × V))
31, 2mpbi 144 . . . 4 𝐴 ⊆ (V × V)
4 relxp 4713 . . . . 5 Rel (V × V)
5 dfrel2 5054 . . . . 5 (Rel (V × V) ↔ (V × V) = (V × V))
64, 5mpbi 144 . . . 4 (V × V) = (V × V)
73, 6sseqtrri 3177 . . 3 𝐴(V × V)
8 dfss 3130 . . 3 (𝐴(V × V) ↔ 𝐴 = (𝐴(V × V)))
97, 8mpbi 144 . 2 𝐴 = (𝐴(V × V))
10 cnvin 5011 . 2 (𝐴(V × V)) = (𝐴(V × V))
11 cnvin 5011 . . . 4 (𝐴 ∩ (V × V)) = (𝐴(V × V))
1211cnveqi 4779 . . 3 (𝐴 ∩ (V × V)) = (𝐴(V × V))
13 inss2 3343 . . . . 5 (𝐴 ∩ (V × V)) ⊆ (V × V)
14 df-rel 4611 . . . . 5 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) ⊆ (V × V))
1513, 14mpbir 145 . . . 4 Rel (𝐴 ∩ (V × V))
16 dfrel2 5054 . . . 4 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)))
1715, 16mpbi 144 . . 3 (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))
1812, 17eqtr3i 2188 . 2 (𝐴(V × V)) = (𝐴 ∩ (V × V))
199, 10, 183eqtr2i 2192 1 𝐴 = (𝐴 ∩ (V × V))
Colors of variables: wff set class
Syntax hints:   = wceq 1343  Vcvv 2726  cin 3115  wss 3116   × cxp 4602  ccnv 4603  Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612
This theorem is referenced by:  cnvcnv2  5057  cnvcnvss  5058  structcnvcnv  12410  strslfv2d  12436
  Copyright terms: Public domain W3C validator