| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvcnv | GIF version | ||
| Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) |
| Ref | Expression |
|---|---|
| cnvcnv | ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5079 | . . . . 5 ⊢ Rel ◡◡𝐴 | |
| 2 | df-rel 4700 | . . . . 5 ⊢ (Rel ◡◡𝐴 ↔ ◡◡𝐴 ⊆ (V × V)) | |
| 3 | 1, 2 | mpbi 145 | . . . 4 ⊢ ◡◡𝐴 ⊆ (V × V) |
| 4 | relxp 4802 | . . . . 5 ⊢ Rel (V × V) | |
| 5 | dfrel2 5152 | . . . . 5 ⊢ (Rel (V × V) ↔ ◡◡(V × V) = (V × V)) | |
| 6 | 4, 5 | mpbi 145 | . . . 4 ⊢ ◡◡(V × V) = (V × V) |
| 7 | 3, 6 | sseqtrri 3236 | . . 3 ⊢ ◡◡𝐴 ⊆ ◡◡(V × V) |
| 8 | dfss 3188 | . . 3 ⊢ (◡◡𝐴 ⊆ ◡◡(V × V) ↔ ◡◡𝐴 = (◡◡𝐴 ∩ ◡◡(V × V))) | |
| 9 | 7, 8 | mpbi 145 | . 2 ⊢ ◡◡𝐴 = (◡◡𝐴 ∩ ◡◡(V × V)) |
| 10 | cnvin 5109 | . 2 ⊢ ◡(◡𝐴 ∩ ◡(V × V)) = (◡◡𝐴 ∩ ◡◡(V × V)) | |
| 11 | cnvin 5109 | . . . 4 ⊢ ◡(𝐴 ∩ (V × V)) = (◡𝐴 ∩ ◡(V × V)) | |
| 12 | 11 | cnveqi 4871 | . . 3 ⊢ ◡◡(𝐴 ∩ (V × V)) = ◡(◡𝐴 ∩ ◡(V × V)) |
| 13 | inss2 3402 | . . . . 5 ⊢ (𝐴 ∩ (V × V)) ⊆ (V × V) | |
| 14 | df-rel 4700 | . . . . 5 ⊢ (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) ⊆ (V × V)) | |
| 15 | 13, 14 | mpbir 146 | . . . 4 ⊢ Rel (𝐴 ∩ (V × V)) |
| 16 | dfrel2 5152 | . . . 4 ⊢ (Rel (𝐴 ∩ (V × V)) ↔ ◡◡(𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))) | |
| 17 | 15, 16 | mpbi 145 | . . 3 ⊢ ◡◡(𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)) |
| 18 | 12, 17 | eqtr3i 2230 | . 2 ⊢ ◡(◡𝐴 ∩ ◡(V × V)) = (𝐴 ∩ (V × V)) |
| 19 | 9, 10, 18 | 3eqtr2i 2234 | 1 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 Vcvv 2776 ∩ cin 3173 ⊆ wss 3174 × cxp 4691 ◡ccnv 4692 Rel wrel 4698 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 df-cnv 4701 |
| This theorem is referenced by: cnvcnv2 5155 cnvcnvss 5156 structcnvcnv 12963 strslfv2d 12990 |
| Copyright terms: Public domain | W3C validator |