ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvcnv GIF version

Theorem cnvcnv 5181
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
cnvcnv 𝐴 = (𝐴 ∩ (V × V))

Proof of Theorem cnvcnv
StepHypRef Expression
1 relcnv 5106 . . . . 5 Rel 𝐴
2 df-rel 4726 . . . . 5 (Rel 𝐴𝐴 ⊆ (V × V))
31, 2mpbi 145 . . . 4 𝐴 ⊆ (V × V)
4 relxp 4828 . . . . 5 Rel (V × V)
5 dfrel2 5179 . . . . 5 (Rel (V × V) ↔ (V × V) = (V × V))
64, 5mpbi 145 . . . 4 (V × V) = (V × V)
73, 6sseqtrri 3259 . . 3 𝐴(V × V)
8 dfss 3211 . . 3 (𝐴(V × V) ↔ 𝐴 = (𝐴(V × V)))
97, 8mpbi 145 . 2 𝐴 = (𝐴(V × V))
10 cnvin 5136 . 2 (𝐴(V × V)) = (𝐴(V × V))
11 cnvin 5136 . . . 4 (𝐴 ∩ (V × V)) = (𝐴(V × V))
1211cnveqi 4897 . . 3 (𝐴 ∩ (V × V)) = (𝐴(V × V))
13 inss2 3425 . . . . 5 (𝐴 ∩ (V × V)) ⊆ (V × V)
14 df-rel 4726 . . . . 5 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) ⊆ (V × V))
1513, 14mpbir 146 . . . 4 Rel (𝐴 ∩ (V × V))
16 dfrel2 5179 . . . 4 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)))
1715, 16mpbi 145 . . 3 (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))
1812, 17eqtr3i 2252 . 2 (𝐴(V × V)) = (𝐴 ∩ (V × V))
199, 10, 183eqtr2i 2256 1 𝐴 = (𝐴 ∩ (V × V))
Colors of variables: wff set class
Syntax hints:   = wceq 1395  Vcvv 2799  cin 3196  wss 3197   × cxp 4717  ccnv 4718  Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727
This theorem is referenced by:  cnvcnv2  5182  cnvcnvss  5183  structcnvcnv  13048  strslfv2d  13075
  Copyright terms: Public domain W3C validator