Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnvcnv | GIF version |
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) |
Ref | Expression |
---|---|
cnvcnv | ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 4989 | . . . . 5 ⊢ Rel ◡◡𝐴 | |
2 | df-rel 4618 | . . . . 5 ⊢ (Rel ◡◡𝐴 ↔ ◡◡𝐴 ⊆ (V × V)) | |
3 | 1, 2 | mpbi 144 | . . . 4 ⊢ ◡◡𝐴 ⊆ (V × V) |
4 | relxp 4720 | . . . . 5 ⊢ Rel (V × V) | |
5 | dfrel2 5061 | . . . . 5 ⊢ (Rel (V × V) ↔ ◡◡(V × V) = (V × V)) | |
6 | 4, 5 | mpbi 144 | . . . 4 ⊢ ◡◡(V × V) = (V × V) |
7 | 3, 6 | sseqtrri 3182 | . . 3 ⊢ ◡◡𝐴 ⊆ ◡◡(V × V) |
8 | dfss 3135 | . . 3 ⊢ (◡◡𝐴 ⊆ ◡◡(V × V) ↔ ◡◡𝐴 = (◡◡𝐴 ∩ ◡◡(V × V))) | |
9 | 7, 8 | mpbi 144 | . 2 ⊢ ◡◡𝐴 = (◡◡𝐴 ∩ ◡◡(V × V)) |
10 | cnvin 5018 | . 2 ⊢ ◡(◡𝐴 ∩ ◡(V × V)) = (◡◡𝐴 ∩ ◡◡(V × V)) | |
11 | cnvin 5018 | . . . 4 ⊢ ◡(𝐴 ∩ (V × V)) = (◡𝐴 ∩ ◡(V × V)) | |
12 | 11 | cnveqi 4786 | . . 3 ⊢ ◡◡(𝐴 ∩ (V × V)) = ◡(◡𝐴 ∩ ◡(V × V)) |
13 | inss2 3348 | . . . . 5 ⊢ (𝐴 ∩ (V × V)) ⊆ (V × V) | |
14 | df-rel 4618 | . . . . 5 ⊢ (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) ⊆ (V × V)) | |
15 | 13, 14 | mpbir 145 | . . . 4 ⊢ Rel (𝐴 ∩ (V × V)) |
16 | dfrel2 5061 | . . . 4 ⊢ (Rel (𝐴 ∩ (V × V)) ↔ ◡◡(𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))) | |
17 | 15, 16 | mpbi 144 | . . 3 ⊢ ◡◡(𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)) |
18 | 12, 17 | eqtr3i 2193 | . 2 ⊢ ◡(◡𝐴 ∩ ◡(V × V)) = (𝐴 ∩ (V × V)) |
19 | 9, 10, 18 | 3eqtr2i 2197 | 1 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 Vcvv 2730 ∩ cin 3120 ⊆ wss 3121 × cxp 4609 ◡ccnv 4610 Rel wrel 4616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 |
This theorem is referenced by: cnvcnv2 5064 cnvcnvss 5065 structcnvcnv 12432 strslfv2d 12458 |
Copyright terms: Public domain | W3C validator |