ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvcnv GIF version

Theorem cnvcnv 5063
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
cnvcnv 𝐴 = (𝐴 ∩ (V × V))

Proof of Theorem cnvcnv
StepHypRef Expression
1 relcnv 4989 . . . . 5 Rel 𝐴
2 df-rel 4618 . . . . 5 (Rel 𝐴𝐴 ⊆ (V × V))
31, 2mpbi 144 . . . 4 𝐴 ⊆ (V × V)
4 relxp 4720 . . . . 5 Rel (V × V)
5 dfrel2 5061 . . . . 5 (Rel (V × V) ↔ (V × V) = (V × V))
64, 5mpbi 144 . . . 4 (V × V) = (V × V)
73, 6sseqtrri 3182 . . 3 𝐴(V × V)
8 dfss 3135 . . 3 (𝐴(V × V) ↔ 𝐴 = (𝐴(V × V)))
97, 8mpbi 144 . 2 𝐴 = (𝐴(V × V))
10 cnvin 5018 . 2 (𝐴(V × V)) = (𝐴(V × V))
11 cnvin 5018 . . . 4 (𝐴 ∩ (V × V)) = (𝐴(V × V))
1211cnveqi 4786 . . 3 (𝐴 ∩ (V × V)) = (𝐴(V × V))
13 inss2 3348 . . . . 5 (𝐴 ∩ (V × V)) ⊆ (V × V)
14 df-rel 4618 . . . . 5 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) ⊆ (V × V))
1513, 14mpbir 145 . . . 4 Rel (𝐴 ∩ (V × V))
16 dfrel2 5061 . . . 4 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)))
1715, 16mpbi 144 . . 3 (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))
1812, 17eqtr3i 2193 . 2 (𝐴(V × V)) = (𝐴 ∩ (V × V))
199, 10, 183eqtr2i 2197 1 𝐴 = (𝐴 ∩ (V × V))
Colors of variables: wff set class
Syntax hints:   = wceq 1348  Vcvv 2730  cin 3120  wss 3121   × cxp 4609  ccnv 4610  Rel wrel 4616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619
This theorem is referenced by:  cnvcnv2  5064  cnvcnvss  5065  structcnvcnv  12432  strslfv2d  12458
  Copyright terms: Public domain W3C validator