| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvcnv | GIF version | ||
| Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) |
| Ref | Expression |
|---|---|
| cnvcnv | ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5106 | . . . . 5 ⊢ Rel ◡◡𝐴 | |
| 2 | df-rel 4726 | . . . . 5 ⊢ (Rel ◡◡𝐴 ↔ ◡◡𝐴 ⊆ (V × V)) | |
| 3 | 1, 2 | mpbi 145 | . . . 4 ⊢ ◡◡𝐴 ⊆ (V × V) |
| 4 | relxp 4828 | . . . . 5 ⊢ Rel (V × V) | |
| 5 | dfrel2 5179 | . . . . 5 ⊢ (Rel (V × V) ↔ ◡◡(V × V) = (V × V)) | |
| 6 | 4, 5 | mpbi 145 | . . . 4 ⊢ ◡◡(V × V) = (V × V) |
| 7 | 3, 6 | sseqtrri 3259 | . . 3 ⊢ ◡◡𝐴 ⊆ ◡◡(V × V) |
| 8 | dfss 3211 | . . 3 ⊢ (◡◡𝐴 ⊆ ◡◡(V × V) ↔ ◡◡𝐴 = (◡◡𝐴 ∩ ◡◡(V × V))) | |
| 9 | 7, 8 | mpbi 145 | . 2 ⊢ ◡◡𝐴 = (◡◡𝐴 ∩ ◡◡(V × V)) |
| 10 | cnvin 5136 | . 2 ⊢ ◡(◡𝐴 ∩ ◡(V × V)) = (◡◡𝐴 ∩ ◡◡(V × V)) | |
| 11 | cnvin 5136 | . . . 4 ⊢ ◡(𝐴 ∩ (V × V)) = (◡𝐴 ∩ ◡(V × V)) | |
| 12 | 11 | cnveqi 4897 | . . 3 ⊢ ◡◡(𝐴 ∩ (V × V)) = ◡(◡𝐴 ∩ ◡(V × V)) |
| 13 | inss2 3425 | . . . . 5 ⊢ (𝐴 ∩ (V × V)) ⊆ (V × V) | |
| 14 | df-rel 4726 | . . . . 5 ⊢ (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) ⊆ (V × V)) | |
| 15 | 13, 14 | mpbir 146 | . . . 4 ⊢ Rel (𝐴 ∩ (V × V)) |
| 16 | dfrel2 5179 | . . . 4 ⊢ (Rel (𝐴 ∩ (V × V)) ↔ ◡◡(𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))) | |
| 17 | 15, 16 | mpbi 145 | . . 3 ⊢ ◡◡(𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)) |
| 18 | 12, 17 | eqtr3i 2252 | . 2 ⊢ ◡(◡𝐴 ∩ ◡(V × V)) = (𝐴 ∩ (V × V)) |
| 19 | 9, 10, 18 | 3eqtr2i 2256 | 1 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 Vcvv 2799 ∩ cin 3196 ⊆ wss 3197 × cxp 4717 ◡ccnv 4718 Rel wrel 4724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-cnv 4727 |
| This theorem is referenced by: cnvcnv2 5182 cnvcnvss 5183 structcnvcnv 13048 strslfv2d 13075 |
| Copyright terms: Public domain | W3C validator |