ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvcnv GIF version

Theorem cnvcnv 4999
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
cnvcnv 𝐴 = (𝐴 ∩ (V × V))

Proof of Theorem cnvcnv
StepHypRef Expression
1 relcnv 4925 . . . . 5 Rel 𝐴
2 df-rel 4554 . . . . 5 (Rel 𝐴𝐴 ⊆ (V × V))
31, 2mpbi 144 . . . 4 𝐴 ⊆ (V × V)
4 relxp 4656 . . . . 5 Rel (V × V)
5 dfrel2 4997 . . . . 5 (Rel (V × V) ↔ (V × V) = (V × V))
64, 5mpbi 144 . . . 4 (V × V) = (V × V)
73, 6sseqtrri 3137 . . 3 𝐴(V × V)
8 dfss 3090 . . 3 (𝐴(V × V) ↔ 𝐴 = (𝐴(V × V)))
97, 8mpbi 144 . 2 𝐴 = (𝐴(V × V))
10 cnvin 4954 . 2 (𝐴(V × V)) = (𝐴(V × V))
11 cnvin 4954 . . . 4 (𝐴 ∩ (V × V)) = (𝐴(V × V))
1211cnveqi 4722 . . 3 (𝐴 ∩ (V × V)) = (𝐴(V × V))
13 inss2 3302 . . . . 5 (𝐴 ∩ (V × V)) ⊆ (V × V)
14 df-rel 4554 . . . . 5 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) ⊆ (V × V))
1513, 14mpbir 145 . . . 4 Rel (𝐴 ∩ (V × V))
16 dfrel2 4997 . . . 4 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)))
1715, 16mpbi 144 . . 3 (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))
1812, 17eqtr3i 2163 . 2 (𝐴(V × V)) = (𝐴 ∩ (V × V))
199, 10, 183eqtr2i 2167 1 𝐴 = (𝐴 ∩ (V × V))
Colors of variables: wff set class
Syntax hints:   = wceq 1332  Vcvv 2689  cin 3075  wss 3076   × cxp 4545  ccnv 4546  Rel wrel 4552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-xp 4553  df-rel 4554  df-cnv 4555
This theorem is referenced by:  cnvcnv2  5000  cnvcnvss  5001  structcnvcnv  12014  strslfv2d  12040
  Copyright terms: Public domain W3C validator