ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvcnv GIF version

Theorem cnvcnv 5122
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
cnvcnv 𝐴 = (𝐴 ∩ (V × V))

Proof of Theorem cnvcnv
StepHypRef Expression
1 relcnv 5047 . . . . 5 Rel 𝐴
2 df-rel 4670 . . . . 5 (Rel 𝐴𝐴 ⊆ (V × V))
31, 2mpbi 145 . . . 4 𝐴 ⊆ (V × V)
4 relxp 4772 . . . . 5 Rel (V × V)
5 dfrel2 5120 . . . . 5 (Rel (V × V) ↔ (V × V) = (V × V))
64, 5mpbi 145 . . . 4 (V × V) = (V × V)
73, 6sseqtrri 3218 . . 3 𝐴(V × V)
8 dfss 3171 . . 3 (𝐴(V × V) ↔ 𝐴 = (𝐴(V × V)))
97, 8mpbi 145 . 2 𝐴 = (𝐴(V × V))
10 cnvin 5077 . 2 (𝐴(V × V)) = (𝐴(V × V))
11 cnvin 5077 . . . 4 (𝐴 ∩ (V × V)) = (𝐴(V × V))
1211cnveqi 4841 . . 3 (𝐴 ∩ (V × V)) = (𝐴(V × V))
13 inss2 3384 . . . . 5 (𝐴 ∩ (V × V)) ⊆ (V × V)
14 df-rel 4670 . . . . 5 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) ⊆ (V × V))
1513, 14mpbir 146 . . . 4 Rel (𝐴 ∩ (V × V))
16 dfrel2 5120 . . . 4 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)))
1715, 16mpbi 145 . . 3 (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))
1812, 17eqtr3i 2219 . 2 (𝐴(V × V)) = (𝐴 ∩ (V × V))
199, 10, 183eqtr2i 2223 1 𝐴 = (𝐴 ∩ (V × V))
Colors of variables: wff set class
Syntax hints:   = wceq 1364  Vcvv 2763  cin 3156  wss 3157   × cxp 4661  ccnv 4662  Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671
This theorem is referenced by:  cnvcnv2  5123  cnvcnvss  5124  structcnvcnv  12694  strslfv2d  12721
  Copyright terms: Public domain W3C validator