| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnvcnv | GIF version | ||
| Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) |
| Ref | Expression |
|---|---|
| cnvcnv | ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5061 | . . . . 5 ⊢ Rel ◡◡𝐴 | |
| 2 | df-rel 4683 | . . . . 5 ⊢ (Rel ◡◡𝐴 ↔ ◡◡𝐴 ⊆ (V × V)) | |
| 3 | 1, 2 | mpbi 145 | . . . 4 ⊢ ◡◡𝐴 ⊆ (V × V) |
| 4 | relxp 4785 | . . . . 5 ⊢ Rel (V × V) | |
| 5 | dfrel2 5134 | . . . . 5 ⊢ (Rel (V × V) ↔ ◡◡(V × V) = (V × V)) | |
| 6 | 4, 5 | mpbi 145 | . . . 4 ⊢ ◡◡(V × V) = (V × V) |
| 7 | 3, 6 | sseqtrri 3228 | . . 3 ⊢ ◡◡𝐴 ⊆ ◡◡(V × V) |
| 8 | dfss 3180 | . . 3 ⊢ (◡◡𝐴 ⊆ ◡◡(V × V) ↔ ◡◡𝐴 = (◡◡𝐴 ∩ ◡◡(V × V))) | |
| 9 | 7, 8 | mpbi 145 | . 2 ⊢ ◡◡𝐴 = (◡◡𝐴 ∩ ◡◡(V × V)) |
| 10 | cnvin 5091 | . 2 ⊢ ◡(◡𝐴 ∩ ◡(V × V)) = (◡◡𝐴 ∩ ◡◡(V × V)) | |
| 11 | cnvin 5091 | . . . 4 ⊢ ◡(𝐴 ∩ (V × V)) = (◡𝐴 ∩ ◡(V × V)) | |
| 12 | 11 | cnveqi 4854 | . . 3 ⊢ ◡◡(𝐴 ∩ (V × V)) = ◡(◡𝐴 ∩ ◡(V × V)) |
| 13 | inss2 3394 | . . . . 5 ⊢ (𝐴 ∩ (V × V)) ⊆ (V × V) | |
| 14 | df-rel 4683 | . . . . 5 ⊢ (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) ⊆ (V × V)) | |
| 15 | 13, 14 | mpbir 146 | . . . 4 ⊢ Rel (𝐴 ∩ (V × V)) |
| 16 | dfrel2 5134 | . . . 4 ⊢ (Rel (𝐴 ∩ (V × V)) ↔ ◡◡(𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))) | |
| 17 | 15, 16 | mpbi 145 | . . 3 ⊢ ◡◡(𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)) |
| 18 | 12, 17 | eqtr3i 2228 | . 2 ⊢ ◡(◡𝐴 ∩ ◡(V × V)) = (𝐴 ∩ (V × V)) |
| 19 | 9, 10, 18 | 3eqtr2i 2232 | 1 ⊢ ◡◡𝐴 = (𝐴 ∩ (V × V)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 Vcvv 2772 ∩ cin 3165 ⊆ wss 3166 × cxp 4674 ◡ccnv 4675 Rel wrel 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-xp 4682 df-rel 4683 df-cnv 4684 |
| This theorem is referenced by: cnvcnv2 5137 cnvcnvss 5138 structcnvcnv 12881 strslfv2d 12908 |
| Copyright terms: Public domain | W3C validator |