ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvcnv GIF version

Theorem cnvcnv 5136
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
cnvcnv 𝐴 = (𝐴 ∩ (V × V))

Proof of Theorem cnvcnv
StepHypRef Expression
1 relcnv 5061 . . . . 5 Rel 𝐴
2 df-rel 4683 . . . . 5 (Rel 𝐴𝐴 ⊆ (V × V))
31, 2mpbi 145 . . . 4 𝐴 ⊆ (V × V)
4 relxp 4785 . . . . 5 Rel (V × V)
5 dfrel2 5134 . . . . 5 (Rel (V × V) ↔ (V × V) = (V × V))
64, 5mpbi 145 . . . 4 (V × V) = (V × V)
73, 6sseqtrri 3228 . . 3 𝐴(V × V)
8 dfss 3180 . . 3 (𝐴(V × V) ↔ 𝐴 = (𝐴(V × V)))
97, 8mpbi 145 . 2 𝐴 = (𝐴(V × V))
10 cnvin 5091 . 2 (𝐴(V × V)) = (𝐴(V × V))
11 cnvin 5091 . . . 4 (𝐴 ∩ (V × V)) = (𝐴(V × V))
1211cnveqi 4854 . . 3 (𝐴 ∩ (V × V)) = (𝐴(V × V))
13 inss2 3394 . . . . 5 (𝐴 ∩ (V × V)) ⊆ (V × V)
14 df-rel 4683 . . . . 5 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) ⊆ (V × V))
1513, 14mpbir 146 . . . 4 Rel (𝐴 ∩ (V × V))
16 dfrel2 5134 . . . 4 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)))
1715, 16mpbi 145 . . 3 (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))
1812, 17eqtr3i 2228 . 2 (𝐴(V × V)) = (𝐴 ∩ (V × V))
199, 10, 183eqtr2i 2232 1 𝐴 = (𝐴 ∩ (V × V))
Colors of variables: wff set class
Syntax hints:   = wceq 1373  Vcvv 2772  cin 3165  wss 3166   × cxp 4674  ccnv 4675  Rel wrel 4681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-xp 4682  df-rel 4683  df-cnv 4684
This theorem is referenced by:  cnvcnv2  5137  cnvcnvss  5138  structcnvcnv  12881  strslfv2d  12908
  Copyright terms: Public domain W3C validator