ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvcnv GIF version

Theorem cnvcnv 5118
Description: The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.)
Assertion
Ref Expression
cnvcnv 𝐴 = (𝐴 ∩ (V × V))

Proof of Theorem cnvcnv
StepHypRef Expression
1 relcnv 5043 . . . . 5 Rel 𝐴
2 df-rel 4666 . . . . 5 (Rel 𝐴𝐴 ⊆ (V × V))
31, 2mpbi 145 . . . 4 𝐴 ⊆ (V × V)
4 relxp 4768 . . . . 5 Rel (V × V)
5 dfrel2 5116 . . . . 5 (Rel (V × V) ↔ (V × V) = (V × V))
64, 5mpbi 145 . . . 4 (V × V) = (V × V)
73, 6sseqtrri 3214 . . 3 𝐴(V × V)
8 dfss 3167 . . 3 (𝐴(V × V) ↔ 𝐴 = (𝐴(V × V)))
97, 8mpbi 145 . 2 𝐴 = (𝐴(V × V))
10 cnvin 5073 . 2 (𝐴(V × V)) = (𝐴(V × V))
11 cnvin 5073 . . . 4 (𝐴 ∩ (V × V)) = (𝐴(V × V))
1211cnveqi 4837 . . 3 (𝐴 ∩ (V × V)) = (𝐴(V × V))
13 inss2 3380 . . . . 5 (𝐴 ∩ (V × V)) ⊆ (V × V)
14 df-rel 4666 . . . . 5 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) ⊆ (V × V))
1513, 14mpbir 146 . . . 4 Rel (𝐴 ∩ (V × V))
16 dfrel2 5116 . . . 4 (Rel (𝐴 ∩ (V × V)) ↔ (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V)))
1715, 16mpbi 145 . . 3 (𝐴 ∩ (V × V)) = (𝐴 ∩ (V × V))
1812, 17eqtr3i 2216 . 2 (𝐴(V × V)) = (𝐴 ∩ (V × V))
199, 10, 183eqtr2i 2220 1 𝐴 = (𝐴 ∩ (V × V))
Colors of variables: wff set class
Syntax hints:   = wceq 1364  Vcvv 2760  cin 3152  wss 3153   × cxp 4657  ccnv 4658  Rel wrel 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667
This theorem is referenced by:  cnvcnv2  5119  cnvcnvss  5120  structcnvcnv  12634  strslfv2d  12661
  Copyright terms: Public domain W3C validator