ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onelini GIF version

Theorem onelini 4481
Description: An element of an ordinal number equals the intersection with it. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1 𝐴 ∈ On
Assertion
Ref Expression
onelini (𝐵𝐴𝐵 = (𝐵𝐴))

Proof of Theorem onelini
StepHypRef Expression
1 on.1 . . 3 𝐴 ∈ On
21onelssi 4480 . 2 (𝐵𝐴𝐵𝐴)
3 dfss 3181 . 2 (𝐵𝐴𝐵 = (𝐵𝐴))
42, 3sylib 122 1 (𝐵𝐴𝐵 = (𝐵𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  cin 3166  wss 3167  Oncon0 4414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-in 3173  df-ss 3180  df-uni 3853  df-tr 4147  df-iord 4417  df-on 4419
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator