| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-ss | GIF version | ||
| Description: Define the subclass relationship. Exercise 9 of [TakeutiZaring] p. 18. Note that 𝐴 ⊆ 𝐴 (proved in ssid 3244). For a more traditional definition, but requiring a dummy variable, see ssalel 3212. Other possible definitions are given by dfss3 3213, ssequn1 3374, ssequn2 3377, and sseqin2 3423. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-ss | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | wss 3197 | . 2 wff 𝐴 ⊆ 𝐵 |
| 4 | 1, 2 | cin 3196 | . . 3 class (𝐴 ∩ 𝐵) |
| 5 | 4, 1 | wceq 1395 | . 2 wff (𝐴 ∩ 𝐵) = 𝐴 |
| 6 | 3, 5 | wb 105 | 1 wff (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
| Colors of variables: wff set class |
| This definition is referenced by: dfss 3211 dfss2 3214 dfss1 3408 inabs 3436 dfrab3ss 3482 disjssun 3555 riinm 4038 rintm 4058 ssex 4221 op1stb 4569 op1stbg 4570 ssdmres 5027 resima2 5039 xpssres 5040 fnimaeq0 5445 f0rn0 5522 fnreseql 5747 tpostpos2 6417 tfrexlem 6486 ecinxp 6765 uzin 9763 iooval2 10119 minmax 11749 xrminmax 11784 2prm 12657 dfphi2 12750 ressbas2d 13109 ressval3d 13113 restid2 13289 lidlbas 14450 difopn 14790 restopnb 14863 cnrest2 14918 bdssex 16289 |
| Copyright terms: Public domain | W3C validator |