| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-ss | GIF version | ||
| Description: Define the subclass relationship. Exercise 9 of [TakeutiZaring] p. 18. Note that 𝐴 ⊆ 𝐴 (proved in ssid 3214). For a more traditional definition, but requiring a dummy variable, see ssalel 3182. Other possible definitions are given by dfss3 3183, ssequn1 3344, ssequn2 3347, and sseqin2 3393. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-ss | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | wss 3167 | . 2 wff 𝐴 ⊆ 𝐵 |
| 4 | 1, 2 | cin 3166 | . . 3 class (𝐴 ∩ 𝐵) |
| 5 | 4, 1 | wceq 1373 | . 2 wff (𝐴 ∩ 𝐵) = 𝐴 |
| 6 | 3, 5 | wb 105 | 1 wff (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
| Colors of variables: wff set class |
| This definition is referenced by: dfss 3181 dfss2 3184 dfss1 3378 inabs 3406 dfrab3ss 3452 disjssun 3525 riinm 4002 rintm 4022 ssex 4185 op1stb 4529 op1stbg 4530 ssdmres 4986 resima2 4998 xpssres 4999 fnimaeq0 5403 f0rn0 5477 fnreseql 5697 tpostpos2 6358 tfrexlem 6427 ecinxp 6704 uzin 9688 iooval2 10044 minmax 11585 xrminmax 11620 2prm 12493 dfphi2 12586 ressbas2d 12944 ressval3d 12948 restid2 13124 lidlbas 14284 difopn 14624 restopnb 14697 cnrest2 14752 bdssex 15912 |
| Copyright terms: Public domain | W3C validator |