Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-ss | GIF version |
Description: Define the subclass relationship. Exercise 9 of [TakeutiZaring] p. 18. Note that 𝐴 ⊆ 𝐴 (proved in ssid 3167). For a more traditional definition, but requiring a dummy variable, see dfss2 3136. Other possible definitions are given by dfss3 3137, ssequn1 3297, ssequn2 3300, and sseqin2 3346. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
df-ss | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | wss 3121 | . 2 wff 𝐴 ⊆ 𝐵 |
4 | 1, 2 | cin 3120 | . . 3 class (𝐴 ∩ 𝐵) |
5 | 4, 1 | wceq 1348 | . 2 wff (𝐴 ∩ 𝐵) = 𝐴 |
6 | 3, 5 | wb 104 | 1 wff (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
Colors of variables: wff set class |
This definition is referenced by: dfss 3135 dfss1 3331 inabs 3359 dfrab3ss 3405 disjssun 3477 riinm 3943 rintm 3963 ssex 4124 op1stb 4461 op1stbg 4462 ssdmres 4911 resima2 4923 xpssres 4924 fnimaeq0 5317 f0rn0 5390 fnreseql 5604 tpostpos2 6242 tfrexlem 6311 ecinxp 6585 uzin 9508 iooval2 9861 minmax 11182 xrminmax 11217 2prm 12070 dfphi2 12163 restid2 12577 difopn 12863 restopnb 12936 cnrest2 12991 bdssex 13899 |
Copyright terms: Public domain | W3C validator |