| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-ss | GIF version | ||
| Description: Define the subclass relationship. Exercise 9 of [TakeutiZaring] p. 18. Note that 𝐴 ⊆ 𝐴 (proved in ssid 3224). For a more traditional definition, but requiring a dummy variable, see ssalel 3192. Other possible definitions are given by dfss3 3193, ssequn1 3354, ssequn2 3357, and sseqin2 3403. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-ss | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | wss 3177 | . 2 wff 𝐴 ⊆ 𝐵 |
| 4 | 1, 2 | cin 3176 | . . 3 class (𝐴 ∩ 𝐵) |
| 5 | 4, 1 | wceq 1375 | . 2 wff (𝐴 ∩ 𝐵) = 𝐴 |
| 6 | 3, 5 | wb 105 | 1 wff (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
| Colors of variables: wff set class |
| This definition is referenced by: dfss 3191 dfss2 3194 dfss1 3388 inabs 3416 dfrab3ss 3462 disjssun 3535 riinm 4017 rintm 4037 ssex 4200 op1stb 4546 op1stbg 4547 ssdmres 5003 resima2 5015 xpssres 5016 fnimaeq0 5421 f0rn0 5496 fnreseql 5718 tpostpos2 6381 tfrexlem 6450 ecinxp 6727 uzin 9723 iooval2 10079 minmax 11707 xrminmax 11742 2prm 12615 dfphi2 12708 ressbas2d 13067 ressval3d 13071 restid2 13247 lidlbas 14407 difopn 14747 restopnb 14820 cnrest2 14875 bdssex 16175 |
| Copyright terms: Public domain | W3C validator |