![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-ss | GIF version |
Description: Define the subclass relationship. Exercise 9 of [TakeutiZaring] p. 18. Note that 𝐴 ⊆ 𝐴 (proved in ssid 3176). For a more traditional definition, but requiring a dummy variable, see dfss2 3145. Other possible definitions are given by dfss3 3146, ssequn1 3306, ssequn2 3309, and sseqin2 3355. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
df-ss | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | wss 3130 | . 2 wff 𝐴 ⊆ 𝐵 |
4 | 1, 2 | cin 3129 | . . 3 class (𝐴 ∩ 𝐵) |
5 | 4, 1 | wceq 1353 | . 2 wff (𝐴 ∩ 𝐵) = 𝐴 |
6 | 3, 5 | wb 105 | 1 wff (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
Colors of variables: wff set class |
This definition is referenced by: dfss 3144 dfss1 3340 inabs 3368 dfrab3ss 3414 disjssun 3487 riinm 3960 rintm 3980 ssex 4141 op1stb 4479 op1stbg 4480 ssdmres 4930 resima2 4942 xpssres 4943 fnimaeq0 5338 f0rn0 5411 fnreseql 5627 tpostpos2 6266 tfrexlem 6335 ecinxp 6610 uzin 9560 iooval2 9915 minmax 11238 xrminmax 11273 2prm 12127 dfphi2 12220 ressbas2d 12528 ressval3d 12531 restid2 12697 difopn 13611 restopnb 13684 cnrest2 13739 bdssex 14657 |
Copyright terms: Public domain | W3C validator |