Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-ss | GIF version |
Description: Define the subclass relationship. Exercise 9 of [TakeutiZaring] p. 18. Note that 𝐴 ⊆ 𝐴 (proved in ssid 3167). For a more traditional definition, but requiring a dummy variable, see dfss2 3136. Other possible definitions are given by dfss3 3137, ssequn1 3297, ssequn2 3300, and sseqin2 3346. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
df-ss | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | wss 3121 | . 2 wff 𝐴 ⊆ 𝐵 |
4 | 1, 2 | cin 3120 | . . 3 class (𝐴 ∩ 𝐵) |
5 | 4, 1 | wceq 1348 | . 2 wff (𝐴 ∩ 𝐵) = 𝐴 |
6 | 3, 5 | wb 104 | 1 wff (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
Colors of variables: wff set class |
This definition is referenced by: dfss 3135 dfss1 3331 inabs 3359 dfrab3ss 3405 disjssun 3478 riinm 3945 rintm 3965 ssex 4126 op1stb 4463 op1stbg 4464 ssdmres 4913 resima2 4925 xpssres 4926 fnimaeq0 5319 f0rn0 5392 fnreseql 5606 tpostpos2 6244 tfrexlem 6313 ecinxp 6588 uzin 9519 iooval2 9872 minmax 11193 xrminmax 11228 2prm 12081 dfphi2 12174 restid2 12588 difopn 12902 restopnb 12975 cnrest2 13030 bdssex 13937 |
Copyright terms: Public domain | W3C validator |