| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-ss | GIF version | ||
| Description: Define the subclass relationship. Exercise 9 of [TakeutiZaring] p. 18. Note that 𝐴 ⊆ 𝐴 (proved in ssid 3204). For a more traditional definition, but requiring a dummy variable, see ssalel 3172. Other possible definitions are given by dfss3 3173, ssequn1 3334, ssequn2 3337, and sseqin2 3383. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-ss | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | wss 3157 | . 2 wff 𝐴 ⊆ 𝐵 |
| 4 | 1, 2 | cin 3156 | . . 3 class (𝐴 ∩ 𝐵) |
| 5 | 4, 1 | wceq 1364 | . 2 wff (𝐴 ∩ 𝐵) = 𝐴 |
| 6 | 3, 5 | wb 105 | 1 wff (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
| Colors of variables: wff set class |
| This definition is referenced by: dfss 3171 dfss2 3174 dfss1 3368 inabs 3396 dfrab3ss 3442 disjssun 3515 riinm 3990 rintm 4010 ssex 4171 op1stb 4514 op1stbg 4515 ssdmres 4969 resima2 4981 xpssres 4982 fnimaeq0 5382 f0rn0 5455 fnreseql 5675 tpostpos2 6332 tfrexlem 6401 ecinxp 6678 uzin 9653 iooval2 10009 minmax 11414 xrminmax 11449 2prm 12322 dfphi2 12415 ressbas2d 12773 ressval3d 12777 restid2 12952 lidlbas 14112 difopn 14430 restopnb 14503 cnrest2 14558 bdssex 15634 |
| Copyright terms: Public domain | W3C validator |