![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-ss | GIF version |
Description: Define the subclass relationship. Exercise 9 of [TakeutiZaring] p. 18. Note that 𝐴 ⊆ 𝐴 (proved in ssid 3175). For a more traditional definition, but requiring a dummy variable, see dfss2 3144. Other possible definitions are given by dfss3 3145, ssequn1 3305, ssequn2 3308, and sseqin2 3354. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
df-ss | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | wss 3129 | . 2 wff 𝐴 ⊆ 𝐵 |
4 | 1, 2 | cin 3128 | . . 3 class (𝐴 ∩ 𝐵) |
5 | 4, 1 | wceq 1353 | . 2 wff (𝐴 ∩ 𝐵) = 𝐴 |
6 | 3, 5 | wb 105 | 1 wff (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
Colors of variables: wff set class |
This definition is referenced by: dfss 3143 dfss1 3339 inabs 3367 dfrab3ss 3413 disjssun 3486 riinm 3959 rintm 3979 ssex 4140 op1stb 4478 op1stbg 4479 ssdmres 4929 resima2 4941 xpssres 4942 fnimaeq0 5337 f0rn0 5410 fnreseql 5626 tpostpos2 6265 tfrexlem 6334 ecinxp 6609 uzin 9559 iooval2 9914 minmax 11237 xrminmax 11272 2prm 12126 dfphi2 12219 ressbas2d 12527 ressval3d 12530 restid2 12696 difopn 13578 restopnb 13651 cnrest2 13706 bdssex 14624 |
Copyright terms: Public domain | W3C validator |