![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-ss | GIF version |
Description: Define the subclass relationship. Exercise 9 of [TakeutiZaring] p. 18. Note that 𝐴 ⊆ 𝐴 (proved in ssid 3199). For a more traditional definition, but requiring a dummy variable, see dfss2 3168. Other possible definitions are given by dfss3 3169, ssequn1 3329, ssequn2 3332, and sseqin2 3378. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
df-ss | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | wss 3153 | . 2 wff 𝐴 ⊆ 𝐵 |
4 | 1, 2 | cin 3152 | . . 3 class (𝐴 ∩ 𝐵) |
5 | 4, 1 | wceq 1364 | . 2 wff (𝐴 ∩ 𝐵) = 𝐴 |
6 | 3, 5 | wb 105 | 1 wff (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
Colors of variables: wff set class |
This definition is referenced by: dfss 3167 dfss1 3363 inabs 3391 dfrab3ss 3437 disjssun 3510 riinm 3985 rintm 4005 ssex 4166 op1stb 4509 op1stbg 4510 ssdmres 4964 resima2 4976 xpssres 4977 fnimaeq0 5375 f0rn0 5448 fnreseql 5668 tpostpos2 6318 tfrexlem 6387 ecinxp 6664 uzin 9625 iooval2 9981 minmax 11373 xrminmax 11408 2prm 12265 dfphi2 12358 ressbas2d 12686 ressval3d 12690 restid2 12859 lidlbas 13974 difopn 14276 restopnb 14349 cnrest2 14404 bdssex 15394 |
Copyright terms: Public domain | W3C validator |