Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-ss | GIF version |
Description: Define the subclass relationship. Exercise 9 of [TakeutiZaring] p. 18. Note that 𝐴 ⊆ 𝐴 (proved in ssid 3161). For a more traditional definition, but requiring a dummy variable, see dfss2 3130. Other possible definitions are given by dfss3 3131, ssequn1 3291, ssequn2 3294, and sseqin2 3340. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
df-ss | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | wss 3115 | . 2 wff 𝐴 ⊆ 𝐵 |
4 | 1, 2 | cin 3114 | . . 3 class (𝐴 ∩ 𝐵) |
5 | 4, 1 | wceq 1343 | . 2 wff (𝐴 ∩ 𝐵) = 𝐴 |
6 | 3, 5 | wb 104 | 1 wff (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) |
Colors of variables: wff set class |
This definition is referenced by: dfss 3129 dfss1 3325 inabs 3353 dfrab3ss 3399 disjssun 3471 riinm 3937 rintm 3957 ssex 4118 op1stb 4455 op1stbg 4456 ssdmres 4905 resima2 4917 xpssres 4918 fnimaeq0 5308 f0rn0 5381 fnreseql 5594 tpostpos2 6229 tfrexlem 6298 ecinxp 6572 uzin 9494 iooval2 9847 minmax 11167 xrminmax 11202 2prm 12055 dfphi2 12148 restid2 12560 difopn 12708 restopnb 12781 cnrest2 12836 bdssex 13744 |
Copyright terms: Public domain | W3C validator |