| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-ss | GIF version | ||
| Description: Define the subclass relationship. Exercise 9 of [TakeutiZaring] p. 18. Note that 𝐴 ⊆ 𝐴 (proved in ssid 3203). For a more traditional definition, but requiring a dummy variable, see dfss2 3172. Other possible definitions are given by dfss3 3173, ssequn1 3333, ssequn2 3336, and sseqin2 3382. (Contributed by NM, 27-Apr-1994.) | 
| Ref | Expression | 
|---|---|
| df-ss | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | wss 3157 | . 2 wff 𝐴 ⊆ 𝐵 | 
| 4 | 1, 2 | cin 3156 | . . 3 class (𝐴 ∩ 𝐵) | 
| 5 | 4, 1 | wceq 1364 | . 2 wff (𝐴 ∩ 𝐵) = 𝐴 | 
| 6 | 3, 5 | wb 105 | 1 wff (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | 
| Colors of variables: wff set class | 
| This definition is referenced by: dfss 3171 dfss1 3367 inabs 3395 dfrab3ss 3441 disjssun 3514 riinm 3989 rintm 4009 ssex 4170 op1stb 4513 op1stbg 4514 ssdmres 4968 resima2 4980 xpssres 4981 fnimaeq0 5379 f0rn0 5452 fnreseql 5672 tpostpos2 6323 tfrexlem 6392 ecinxp 6669 uzin 9634 iooval2 9990 minmax 11395 xrminmax 11430 2prm 12295 dfphi2 12388 ressbas2d 12746 ressval3d 12750 restid2 12919 lidlbas 14034 difopn 14344 restopnb 14417 cnrest2 14472 bdssex 15548 | 
| Copyright terms: Public domain | W3C validator |