| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funimass1 | GIF version | ||
| Description: A kind of contraposition law that infers a subclass of an image from a preimage subclass. (Contributed by NM, 25-May-2004.) |
| Ref | Expression |
|---|---|
| funimass1 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹) → ((◡𝐹 “ 𝐴) ⊆ 𝐵 → 𝐴 ⊆ (𝐹 “ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imass2 5080 | . 2 ⊢ ((◡𝐹 “ 𝐴) ⊆ 𝐵 → (𝐹 “ (◡𝐹 “ 𝐴)) ⊆ (𝐹 “ 𝐵)) | |
| 2 | funimacnv 5373 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐴)) = (𝐴 ∩ ran 𝐹)) | |
| 3 | dfss 3191 | . . . . . 6 ⊢ (𝐴 ⊆ ran 𝐹 ↔ 𝐴 = (𝐴 ∩ ran 𝐹)) | |
| 4 | 3 | biimpi 120 | . . . . 5 ⊢ (𝐴 ⊆ ran 𝐹 → 𝐴 = (𝐴 ∩ ran 𝐹)) |
| 5 | 4 | eqcomd 2215 | . . . 4 ⊢ (𝐴 ⊆ ran 𝐹 → (𝐴 ∩ ran 𝐹) = 𝐴) |
| 6 | 2, 5 | sylan9eq 2262 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹) → (𝐹 “ (◡𝐹 “ 𝐴)) = 𝐴) |
| 7 | 6 | sseq1d 3233 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹) → ((𝐹 “ (◡𝐹 “ 𝐴)) ⊆ (𝐹 “ 𝐵) ↔ 𝐴 ⊆ (𝐹 “ 𝐵))) |
| 8 | 1, 7 | imbitrid 154 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹) → ((◡𝐹 “ 𝐴) ⊆ 𝐵 → 𝐴 ⊆ (𝐹 “ 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1375 ∩ cin 3176 ⊆ wss 3177 ◡ccnv 4695 ran crn 4697 “ cima 4699 Fun wfun 5288 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-opab 4125 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-fun 5296 |
| This theorem is referenced by: hmeontr 14952 |
| Copyright terms: Public domain | W3C validator |