ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimass1 GIF version

Theorem funimass1 5331
Description: A kind of contraposition law that infers a subclass of an image from a preimage subclass. (Contributed by NM, 25-May-2004.)
Assertion
Ref Expression
funimass1 ((Fun 𝐹𝐴 ⊆ ran 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))

Proof of Theorem funimass1
StepHypRef Expression
1 imass2 5041 . 2 ((𝐹𝐴) ⊆ 𝐵 → (𝐹 “ (𝐹𝐴)) ⊆ (𝐹𝐵))
2 funimacnv 5330 . . . 4 (Fun 𝐹 → (𝐹 “ (𝐹𝐴)) = (𝐴 ∩ ran 𝐹))
3 dfss 3167 . . . . . 6 (𝐴 ⊆ ran 𝐹𝐴 = (𝐴 ∩ ran 𝐹))
43biimpi 120 . . . . 5 (𝐴 ⊆ ran 𝐹𝐴 = (𝐴 ∩ ran 𝐹))
54eqcomd 2199 . . . 4 (𝐴 ⊆ ran 𝐹 → (𝐴 ∩ ran 𝐹) = 𝐴)
62, 5sylan9eq 2246 . . 3 ((Fun 𝐹𝐴 ⊆ ran 𝐹) → (𝐹 “ (𝐹𝐴)) = 𝐴)
76sseq1d 3208 . 2 ((Fun 𝐹𝐴 ⊆ ran 𝐹) → ((𝐹 “ (𝐹𝐴)) ⊆ (𝐹𝐵) ↔ 𝐴 ⊆ (𝐹𝐵)))
81, 7imbitrid 154 1 ((Fun 𝐹𝐴 ⊆ ran 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  cin 3152  wss 3153  ccnv 4658  ran crn 4660  cima 4662  Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-fun 5256
This theorem is referenced by:  hmeontr  14481
  Copyright terms: Public domain W3C validator