ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimass1 GIF version

Theorem funimass1 5275
Description: A kind of contraposition law that infers a subclass of an image from a preimage subclass. (Contributed by NM, 25-May-2004.)
Assertion
Ref Expression
funimass1 ((Fun 𝐹𝐴 ⊆ ran 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))

Proof of Theorem funimass1
StepHypRef Expression
1 imass2 4987 . 2 ((𝐹𝐴) ⊆ 𝐵 → (𝐹 “ (𝐹𝐴)) ⊆ (𝐹𝐵))
2 funimacnv 5274 . . . 4 (Fun 𝐹 → (𝐹 “ (𝐹𝐴)) = (𝐴 ∩ ran 𝐹))
3 dfss 3135 . . . . . 6 (𝐴 ⊆ ran 𝐹𝐴 = (𝐴 ∩ ran 𝐹))
43biimpi 119 . . . . 5 (𝐴 ⊆ ran 𝐹𝐴 = (𝐴 ∩ ran 𝐹))
54eqcomd 2176 . . . 4 (𝐴 ⊆ ran 𝐹 → (𝐴 ∩ ran 𝐹) = 𝐴)
62, 5sylan9eq 2223 . . 3 ((Fun 𝐹𝐴 ⊆ ran 𝐹) → (𝐹 “ (𝐹𝐴)) = 𝐴)
76sseq1d 3176 . 2 ((Fun 𝐹𝐴 ⊆ ran 𝐹) → ((𝐹 “ (𝐹𝐴)) ⊆ (𝐹𝐵) ↔ 𝐴 ⊆ (𝐹𝐵)))
81, 7syl5ib 153 1 ((Fun 𝐹𝐴 ⊆ ran 𝐹) → ((𝐹𝐴) ⊆ 𝐵𝐴 ⊆ (𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  cin 3120  wss 3121  ccnv 4610  ran crn 4612  cima 4614  Fun wfun 5192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-fun 5200
This theorem is referenced by:  hmeontr  13107
  Copyright terms: Public domain W3C validator