Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funimass1 | GIF version |
Description: A kind of contraposition law that infers a subclass of an image from a preimage subclass. (Contributed by NM, 25-May-2004.) |
Ref | Expression |
---|---|
funimass1 | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹) → ((◡𝐹 “ 𝐴) ⊆ 𝐵 → 𝐴 ⊆ (𝐹 “ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imass2 4980 | . 2 ⊢ ((◡𝐹 “ 𝐴) ⊆ 𝐵 → (𝐹 “ (◡𝐹 “ 𝐴)) ⊆ (𝐹 “ 𝐵)) | |
2 | funimacnv 5264 | . . . 4 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐴)) = (𝐴 ∩ ran 𝐹)) | |
3 | dfss 3130 | . . . . . 6 ⊢ (𝐴 ⊆ ran 𝐹 ↔ 𝐴 = (𝐴 ∩ ran 𝐹)) | |
4 | 3 | biimpi 119 | . . . . 5 ⊢ (𝐴 ⊆ ran 𝐹 → 𝐴 = (𝐴 ∩ ran 𝐹)) |
5 | 4 | eqcomd 2171 | . . . 4 ⊢ (𝐴 ⊆ ran 𝐹 → (𝐴 ∩ ran 𝐹) = 𝐴) |
6 | 2, 5 | sylan9eq 2219 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹) → (𝐹 “ (◡𝐹 “ 𝐴)) = 𝐴) |
7 | 6 | sseq1d 3171 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹) → ((𝐹 “ (◡𝐹 “ 𝐴)) ⊆ (𝐹 “ 𝐵) ↔ 𝐴 ⊆ (𝐹 “ 𝐵))) |
8 | 1, 7 | syl5ib 153 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ ran 𝐹) → ((◡𝐹 “ 𝐴) ⊆ 𝐵 → 𝐴 ⊆ (𝐹 “ 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∩ cin 3115 ⊆ wss 3116 ◡ccnv 4603 ran crn 4605 “ cima 4607 Fun wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-fun 5190 |
This theorem is referenced by: hmeontr 12953 |
Copyright terms: Public domain | W3C validator |