![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmaddpi | GIF version |
Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) |
Ref | Expression |
---|---|
dmaddpi | ⊢ dom +N = (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 4929 | . . 3 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ dom +o ) | |
2 | fnoa 6448 | . . . . 5 ⊢ +o Fn (On × On) | |
3 | fndm 5316 | . . . . 5 ⊢ ( +o Fn (On × On) → dom +o = (On × On)) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ dom +o = (On × On) |
5 | 4 | ineq2i 3334 | . . 3 ⊢ ((N × N) ∩ dom +o ) = ((N × N) ∩ (On × On)) |
6 | 1, 5 | eqtri 2198 | . 2 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ (On × On)) |
7 | df-pli 7304 | . . 3 ⊢ +N = ( +o ↾ (N × N)) | |
8 | 7 | dmeqi 4829 | . 2 ⊢ dom +N = dom ( +o ↾ (N × N)) |
9 | df-ni 7303 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
10 | difss 3262 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
11 | 9, 10 | eqsstri 3188 | . . . . . 6 ⊢ N ⊆ ω |
12 | omsson 4613 | . . . . . 6 ⊢ ω ⊆ On | |
13 | 11, 12 | sstri 3165 | . . . . 5 ⊢ N ⊆ On |
14 | anidm 396 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
15 | 13, 14 | mpbir 146 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
16 | xpss12 4734 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
17 | 15, 16 | ax-mp 5 | . . 3 ⊢ (N × N) ⊆ (On × On) |
18 | dfss 3144 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
19 | 17, 18 | mpbi 145 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
20 | 6, 8, 19 | 3eqtr4i 2208 | 1 ⊢ dom +N = (N × N) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1353 ∖ cdif 3127 ∩ cin 3129 ⊆ wss 3130 ∅c0 3423 {csn 3593 Oncon0 4364 ωcom 4590 × cxp 4625 dom cdm 4627 ↾ cres 4629 Fn wfn 5212 +o coa 6414 Ncnpi 7271 +N cpli 7272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-iinf 4588 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-tr 4103 df-id 4294 df-iord 4367 df-on 4369 df-suc 4372 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-oprab 5879 df-mpo 5880 df-1st 6141 df-2nd 6142 df-recs 6306 df-irdg 6371 df-oadd 6421 df-ni 7303 df-pli 7304 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |