ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmaddpi GIF version

Theorem dmaddpi 7287
Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.)
Assertion
Ref Expression
dmaddpi dom +N = (N × N)

Proof of Theorem dmaddpi
StepHypRef Expression
1 dmres 4912 . . 3 dom ( +o ↾ (N × N)) = ((N × N) ∩ dom +o )
2 fnoa 6426 . . . . 5 +o Fn (On × On)
3 fndm 5297 . . . . 5 ( +o Fn (On × On) → dom +o = (On × On))
42, 3ax-mp 5 . . . 4 dom +o = (On × On)
54ineq2i 3325 . . 3 ((N × N) ∩ dom +o ) = ((N × N) ∩ (On × On))
61, 5eqtri 2191 . 2 dom ( +o ↾ (N × N)) = ((N × N) ∩ (On × On))
7 df-pli 7267 . . 3 +N = ( +o ↾ (N × N))
87dmeqi 4812 . 2 dom +N = dom ( +o ↾ (N × N))
9 df-ni 7266 . . . . . . 7 N = (ω ∖ {∅})
10 difss 3253 . . . . . . 7 (ω ∖ {∅}) ⊆ ω
119, 10eqsstri 3179 . . . . . 6 N ⊆ ω
12 omsson 4597 . . . . . 6 ω ⊆ On
1311, 12sstri 3156 . . . . 5 N ⊆ On
14 anidm 394 . . . . 5 ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On)
1513, 14mpbir 145 . . . 4 (N ⊆ On ∧ N ⊆ On)
16 xpss12 4718 . . . 4 ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On))
1715, 16ax-mp 5 . . 3 (N × N) ⊆ (On × On)
18 dfss 3135 . . 3 ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On)))
1917, 18mpbi 144 . 2 (N × N) = ((N × N) ∩ (On × On))
206, 8, 193eqtr4i 2201 1 dom +N = (N × N)
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1348  cdif 3118  cin 3120  wss 3121  c0 3414  {csn 3583  Oncon0 4348  ωcom 4574   × cxp 4609  dom cdm 4611  cres 4613   Fn wfn 5193   +o coa 6392  Ncnpi 7234   +N cpli 7235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-ni 7266  df-pli 7267
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator