ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmaddpi GIF version

Theorem dmaddpi 7451
Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.)
Assertion
Ref Expression
dmaddpi dom +N = (N × N)

Proof of Theorem dmaddpi
StepHypRef Expression
1 dmres 4986 . . 3 dom ( +o ↾ (N × N)) = ((N × N) ∩ dom +o )
2 fnoa 6543 . . . . 5 +o Fn (On × On)
3 fndm 5379 . . . . 5 ( +o Fn (On × On) → dom +o = (On × On))
42, 3ax-mp 5 . . . 4 dom +o = (On × On)
54ineq2i 3373 . . 3 ((N × N) ∩ dom +o ) = ((N × N) ∩ (On × On))
61, 5eqtri 2227 . 2 dom ( +o ↾ (N × N)) = ((N × N) ∩ (On × On))
7 df-pli 7431 . . 3 +N = ( +o ↾ (N × N))
87dmeqi 4885 . 2 dom +N = dom ( +o ↾ (N × N))
9 df-ni 7430 . . . . . . 7 N = (ω ∖ {∅})
10 difss 3301 . . . . . . 7 (ω ∖ {∅}) ⊆ ω
119, 10eqsstri 3227 . . . . . 6 N ⊆ ω
12 omsson 4666 . . . . . 6 ω ⊆ On
1311, 12sstri 3204 . . . . 5 N ⊆ On
14 anidm 396 . . . . 5 ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On)
1513, 14mpbir 146 . . . 4 (N ⊆ On ∧ N ⊆ On)
16 xpss12 4787 . . . 4 ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On))
1715, 16ax-mp 5 . . 3 (N × N) ⊆ (On × On)
18 dfss 3182 . . 3 ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On)))
1917, 18mpbi 145 . 2 (N × N) = ((N × N) ∩ (On × On))
206, 8, 193eqtr4i 2237 1 dom +N = (N × N)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  cdif 3165  cin 3167  wss 3168  c0 3462  {csn 3635  Oncon0 4415  ωcom 4643   × cxp 4678  dom cdm 4680  cres 4682   Fn wfn 5272   +o coa 6509  Ncnpi 7398   +N cpli 7399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-iord 4418  df-on 4420  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-oadd 6516  df-ni 7430  df-pli 7431
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator