ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmaddpi GIF version

Theorem dmaddpi 7392
Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.)
Assertion
Ref Expression
dmaddpi dom +N = (N × N)

Proof of Theorem dmaddpi
StepHypRef Expression
1 dmres 4967 . . 3 dom ( +o ↾ (N × N)) = ((N × N) ∩ dom +o )
2 fnoa 6505 . . . . 5 +o Fn (On × On)
3 fndm 5357 . . . . 5 ( +o Fn (On × On) → dom +o = (On × On))
42, 3ax-mp 5 . . . 4 dom +o = (On × On)
54ineq2i 3361 . . 3 ((N × N) ∩ dom +o ) = ((N × N) ∩ (On × On))
61, 5eqtri 2217 . 2 dom ( +o ↾ (N × N)) = ((N × N) ∩ (On × On))
7 df-pli 7372 . . 3 +N = ( +o ↾ (N × N))
87dmeqi 4867 . 2 dom +N = dom ( +o ↾ (N × N))
9 df-ni 7371 . . . . . . 7 N = (ω ∖ {∅})
10 difss 3289 . . . . . . 7 (ω ∖ {∅}) ⊆ ω
119, 10eqsstri 3215 . . . . . 6 N ⊆ ω
12 omsson 4649 . . . . . 6 ω ⊆ On
1311, 12sstri 3192 . . . . 5 N ⊆ On
14 anidm 396 . . . . 5 ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On)
1513, 14mpbir 146 . . . 4 (N ⊆ On ∧ N ⊆ On)
16 xpss12 4770 . . . 4 ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On))
1715, 16ax-mp 5 . . 3 (N × N) ⊆ (On × On)
18 dfss 3171 . . 3 ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On)))
1917, 18mpbi 145 . 2 (N × N) = ((N × N) ∩ (On × On))
206, 8, 193eqtr4i 2227 1 dom +N = (N × N)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  cdif 3154  cin 3156  wss 3157  c0 3450  {csn 3622  Oncon0 4398  ωcom 4626   × cxp 4661  dom cdm 4663  cres 4665   Fn wfn 5253   +o coa 6471  Ncnpi 7339   +N cpli 7340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-oadd 6478  df-ni 7371  df-pli 7372
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator