ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dmaddpi GIF version

Theorem dmaddpi 7157
Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.)
Assertion
Ref Expression
dmaddpi dom +N = (N × N)

Proof of Theorem dmaddpi
StepHypRef Expression
1 dmres 4848 . . 3 dom ( +o ↾ (N × N)) = ((N × N) ∩ dom +o )
2 fnoa 6351 . . . . 5 +o Fn (On × On)
3 fndm 5230 . . . . 5 ( +o Fn (On × On) → dom +o = (On × On))
42, 3ax-mp 5 . . . 4 dom +o = (On × On)
54ineq2i 3279 . . 3 ((N × N) ∩ dom +o ) = ((N × N) ∩ (On × On))
61, 5eqtri 2161 . 2 dom ( +o ↾ (N × N)) = ((N × N) ∩ (On × On))
7 df-pli 7137 . . 3 +N = ( +o ↾ (N × N))
87dmeqi 4748 . 2 dom +N = dom ( +o ↾ (N × N))
9 df-ni 7136 . . . . . . 7 N = (ω ∖ {∅})
10 difss 3207 . . . . . . 7 (ω ∖ {∅}) ⊆ ω
119, 10eqsstri 3134 . . . . . 6 N ⊆ ω
12 omsson 4534 . . . . . 6 ω ⊆ On
1311, 12sstri 3111 . . . . 5 N ⊆ On
14 anidm 394 . . . . 5 ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On)
1513, 14mpbir 145 . . . 4 (N ⊆ On ∧ N ⊆ On)
16 xpss12 4654 . . . 4 ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On))
1715, 16ax-mp 5 . . 3 (N × N) ⊆ (On × On)
18 dfss 3090 . . 3 ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On)))
1917, 18mpbi 144 . 2 (N × N) = ((N × N) ∩ (On × On))
206, 8, 193eqtr4i 2171 1 dom +N = (N × N)
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1332  cdif 3073  cin 3075  wss 3076  c0 3368  {csn 3532  Oncon0 4293  ωcom 4512   × cxp 4545  dom cdm 4547  cres 4549   Fn wfn 5126   +o coa 6318  Ncnpi 7104   +N cpli 7105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-oadd 6325  df-ni 7136  df-pli 7137
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator