Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dmaddpi | GIF version |
Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) |
Ref | Expression |
---|---|
dmaddpi | ⊢ dom +N = (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 4912 | . . 3 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ dom +o ) | |
2 | fnoa 6426 | . . . . 5 ⊢ +o Fn (On × On) | |
3 | fndm 5297 | . . . . 5 ⊢ ( +o Fn (On × On) → dom +o = (On × On)) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ dom +o = (On × On) |
5 | 4 | ineq2i 3325 | . . 3 ⊢ ((N × N) ∩ dom +o ) = ((N × N) ∩ (On × On)) |
6 | 1, 5 | eqtri 2191 | . 2 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ (On × On)) |
7 | df-pli 7267 | . . 3 ⊢ +N = ( +o ↾ (N × N)) | |
8 | 7 | dmeqi 4812 | . 2 ⊢ dom +N = dom ( +o ↾ (N × N)) |
9 | df-ni 7266 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
10 | difss 3253 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
11 | 9, 10 | eqsstri 3179 | . . . . . 6 ⊢ N ⊆ ω |
12 | omsson 4597 | . . . . . 6 ⊢ ω ⊆ On | |
13 | 11, 12 | sstri 3156 | . . . . 5 ⊢ N ⊆ On |
14 | anidm 394 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
15 | 13, 14 | mpbir 145 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
16 | xpss12 4718 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
17 | 15, 16 | ax-mp 5 | . . 3 ⊢ (N × N) ⊆ (On × On) |
18 | dfss 3135 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
19 | 17, 18 | mpbi 144 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
20 | 6, 8, 19 | 3eqtr4i 2201 | 1 ⊢ dom +N = (N × N) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∖ cdif 3118 ∩ cin 3120 ⊆ wss 3121 ∅c0 3414 {csn 3583 Oncon0 4348 ωcom 4574 × cxp 4609 dom cdm 4611 ↾ cres 4613 Fn wfn 5193 +o coa 6392 Ncnpi 7234 +N cpli 7235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-oadd 6399 df-ni 7266 df-pli 7267 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |