![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmaddpi | GIF version |
Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) |
Ref | Expression |
---|---|
dmaddpi | ⊢ dom +N = (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 4963 | . . 3 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ dom +o ) | |
2 | fnoa 6500 | . . . . 5 ⊢ +o Fn (On × On) | |
3 | fndm 5353 | . . . . 5 ⊢ ( +o Fn (On × On) → dom +o = (On × On)) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ dom +o = (On × On) |
5 | 4 | ineq2i 3357 | . . 3 ⊢ ((N × N) ∩ dom +o ) = ((N × N) ∩ (On × On)) |
6 | 1, 5 | eqtri 2214 | . 2 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ (On × On)) |
7 | df-pli 7365 | . . 3 ⊢ +N = ( +o ↾ (N × N)) | |
8 | 7 | dmeqi 4863 | . 2 ⊢ dom +N = dom ( +o ↾ (N × N)) |
9 | df-ni 7364 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
10 | difss 3285 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
11 | 9, 10 | eqsstri 3211 | . . . . . 6 ⊢ N ⊆ ω |
12 | omsson 4645 | . . . . . 6 ⊢ ω ⊆ On | |
13 | 11, 12 | sstri 3188 | . . . . 5 ⊢ N ⊆ On |
14 | anidm 396 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
15 | 13, 14 | mpbir 146 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
16 | xpss12 4766 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
17 | 15, 16 | ax-mp 5 | . . 3 ⊢ (N × N) ⊆ (On × On) |
18 | dfss 3167 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
19 | 17, 18 | mpbi 145 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
20 | 6, 8, 19 | 3eqtr4i 2224 | 1 ⊢ dom +N = (N × N) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∖ cdif 3150 ∩ cin 3152 ⊆ wss 3153 ∅c0 3446 {csn 3618 Oncon0 4394 ωcom 4622 × cxp 4657 dom cdm 4659 ↾ cres 4661 Fn wfn 5249 +o coa 6466 Ncnpi 7332 +N cpli 7333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-oadd 6473 df-ni 7364 df-pli 7365 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |