| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmaddpi | GIF version | ||
| Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) |
| Ref | Expression |
|---|---|
| dmaddpi | ⊢ dom +N = (N × N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres 4967 | . . 3 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ dom +o ) | |
| 2 | fnoa 6505 | . . . . 5 ⊢ +o Fn (On × On) | |
| 3 | fndm 5357 | . . . . 5 ⊢ ( +o Fn (On × On) → dom +o = (On × On)) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ dom +o = (On × On) |
| 5 | 4 | ineq2i 3361 | . . 3 ⊢ ((N × N) ∩ dom +o ) = ((N × N) ∩ (On × On)) |
| 6 | 1, 5 | eqtri 2217 | . 2 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ (On × On)) |
| 7 | df-pli 7372 | . . 3 ⊢ +N = ( +o ↾ (N × N)) | |
| 8 | 7 | dmeqi 4867 | . 2 ⊢ dom +N = dom ( +o ↾ (N × N)) |
| 9 | df-ni 7371 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
| 10 | difss 3289 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 11 | 9, 10 | eqsstri 3215 | . . . . . 6 ⊢ N ⊆ ω |
| 12 | omsson 4649 | . . . . . 6 ⊢ ω ⊆ On | |
| 13 | 11, 12 | sstri 3192 | . . . . 5 ⊢ N ⊆ On |
| 14 | anidm 396 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
| 15 | 13, 14 | mpbir 146 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
| 16 | xpss12 4770 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
| 17 | 15, 16 | ax-mp 5 | . . 3 ⊢ (N × N) ⊆ (On × On) |
| 18 | dfss 3171 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
| 19 | 17, 18 | mpbi 145 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
| 20 | 6, 8, 19 | 3eqtr4i 2227 | 1 ⊢ dom +N = (N × N) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∖ cdif 3154 ∩ cin 3156 ⊆ wss 3157 ∅c0 3450 {csn 3622 Oncon0 4398 ωcom 4626 × cxp 4661 dom cdm 4663 ↾ cres 4665 Fn wfn 5253 +o coa 6471 Ncnpi 7339 +N cpli 7340 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-oadd 6478 df-ni 7371 df-pli 7372 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |