![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dmaddpi | GIF version |
Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) |
Ref | Expression |
---|---|
dmaddpi | ⊢ dom +N = (N × N) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 4734 | . . 3 ⊢ dom ( +𝑜 ↾ (N × N)) = ((N × N) ∩ dom +𝑜 ) | |
2 | fnoa 6208 | . . . . 5 ⊢ +𝑜 Fn (On × On) | |
3 | fndm 5113 | . . . . 5 ⊢ ( +𝑜 Fn (On × On) → dom +𝑜 = (On × On)) | |
4 | 2, 3 | ax-mp 7 | . . . 4 ⊢ dom +𝑜 = (On × On) |
5 | 4 | ineq2i 3198 | . . 3 ⊢ ((N × N) ∩ dom +𝑜 ) = ((N × N) ∩ (On × On)) |
6 | 1, 5 | eqtri 2108 | . 2 ⊢ dom ( +𝑜 ↾ (N × N)) = ((N × N) ∩ (On × On)) |
7 | df-pli 6862 | . . 3 ⊢ +N = ( +𝑜 ↾ (N × N)) | |
8 | 7 | dmeqi 4637 | . 2 ⊢ dom +N = dom ( +𝑜 ↾ (N × N)) |
9 | df-ni 6861 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
10 | difss 3126 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
11 | 9, 10 | eqsstri 3056 | . . . . . 6 ⊢ N ⊆ ω |
12 | omsson 4427 | . . . . . 6 ⊢ ω ⊆ On | |
13 | 11, 12 | sstri 3034 | . . . . 5 ⊢ N ⊆ On |
14 | anidm 388 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
15 | 13, 14 | mpbir 144 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
16 | xpss12 4545 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
17 | 15, 16 | ax-mp 7 | . . 3 ⊢ (N × N) ⊆ (On × On) |
18 | dfss 3013 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
19 | 17, 18 | mpbi 143 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
20 | 6, 8, 19 | 3eqtr4i 2118 | 1 ⊢ dom +N = (N × N) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 = wceq 1289 ∖ cdif 2996 ∩ cin 2998 ⊆ wss 2999 ∅c0 3286 {csn 3446 Oncon0 4190 ωcom 4405 × cxp 4436 dom cdm 4438 ↾ cres 4440 Fn wfn 5010 +𝑜 coa 6178 Ncnpi 6829 +N cpli 6830 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-coll 3954 ax-sep 3957 ax-nul 3965 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-iinf 4403 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-ral 2364 df-rex 2365 df-reu 2366 df-rab 2368 df-v 2621 df-sbc 2841 df-csb 2934 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-nul 3287 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-iun 3732 df-br 3846 df-opab 3900 df-mpt 3901 df-tr 3937 df-id 4120 df-iord 4193 df-on 4195 df-suc 4198 df-iom 4406 df-xp 4444 df-rel 4445 df-cnv 4446 df-co 4447 df-dm 4448 df-rn 4449 df-res 4450 df-ima 4451 df-iota 4980 df-fun 5017 df-fn 5018 df-f 5019 df-f1 5020 df-fo 5021 df-f1o 5022 df-fv 5023 df-oprab 5656 df-mpt2 5657 df-1st 5911 df-2nd 5912 df-recs 6070 df-irdg 6135 df-oadd 6185 df-ni 6861 df-pli 6862 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |