| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmaddpi | GIF version | ||
| Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) |
| Ref | Expression |
|---|---|
| dmaddpi | ⊢ dom +N = (N × N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres 4986 | . . 3 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ dom +o ) | |
| 2 | fnoa 6543 | . . . . 5 ⊢ +o Fn (On × On) | |
| 3 | fndm 5379 | . . . . 5 ⊢ ( +o Fn (On × On) → dom +o = (On × On)) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ dom +o = (On × On) |
| 5 | 4 | ineq2i 3373 | . . 3 ⊢ ((N × N) ∩ dom +o ) = ((N × N) ∩ (On × On)) |
| 6 | 1, 5 | eqtri 2227 | . 2 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ (On × On)) |
| 7 | df-pli 7431 | . . 3 ⊢ +N = ( +o ↾ (N × N)) | |
| 8 | 7 | dmeqi 4885 | . 2 ⊢ dom +N = dom ( +o ↾ (N × N)) |
| 9 | df-ni 7430 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
| 10 | difss 3301 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 11 | 9, 10 | eqsstri 3227 | . . . . . 6 ⊢ N ⊆ ω |
| 12 | omsson 4666 | . . . . . 6 ⊢ ω ⊆ On | |
| 13 | 11, 12 | sstri 3204 | . . . . 5 ⊢ N ⊆ On |
| 14 | anidm 396 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
| 15 | 13, 14 | mpbir 146 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
| 16 | xpss12 4787 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
| 17 | 15, 16 | ax-mp 5 | . . 3 ⊢ (N × N) ⊆ (On × On) |
| 18 | dfss 3182 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
| 19 | 17, 18 | mpbi 145 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
| 20 | 6, 8, 19 | 3eqtr4i 2237 | 1 ⊢ dom +N = (N × N) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∖ cdif 3165 ∩ cin 3167 ⊆ wss 3168 ∅c0 3462 {csn 3635 Oncon0 4415 ωcom 4643 × cxp 4678 dom cdm 4680 ↾ cres 4682 Fn wfn 5272 +o coa 6509 Ncnpi 7398 +N cpli 7399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-iord 4418 df-on 4420 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-irdg 6466 df-oadd 6516 df-ni 7430 df-pli 7431 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |