| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dmaddpi | GIF version | ||
| Description: Domain of addition on positive integers. (Contributed by NM, 26-Aug-1995.) |
| Ref | Expression |
|---|---|
| dmaddpi | ⊢ dom +N = (N × N) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres 5022 | . . 3 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ dom +o ) | |
| 2 | fnoa 6583 | . . . . 5 ⊢ +o Fn (On × On) | |
| 3 | fndm 5416 | . . . . 5 ⊢ ( +o Fn (On × On) → dom +o = (On × On)) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ dom +o = (On × On) |
| 5 | 4 | ineq2i 3402 | . . 3 ⊢ ((N × N) ∩ dom +o ) = ((N × N) ∩ (On × On)) |
| 6 | 1, 5 | eqtri 2250 | . 2 ⊢ dom ( +o ↾ (N × N)) = ((N × N) ∩ (On × On)) |
| 7 | df-pli 7480 | . . 3 ⊢ +N = ( +o ↾ (N × N)) | |
| 8 | 7 | dmeqi 4921 | . 2 ⊢ dom +N = dom ( +o ↾ (N × N)) |
| 9 | df-ni 7479 | . . . . . . 7 ⊢ N = (ω ∖ {∅}) | |
| 10 | difss 3330 | . . . . . . 7 ⊢ (ω ∖ {∅}) ⊆ ω | |
| 11 | 9, 10 | eqsstri 3256 | . . . . . 6 ⊢ N ⊆ ω |
| 12 | omsson 4702 | . . . . . 6 ⊢ ω ⊆ On | |
| 13 | 11, 12 | sstri 3233 | . . . . 5 ⊢ N ⊆ On |
| 14 | anidm 396 | . . . . 5 ⊢ ((N ⊆ On ∧ N ⊆ On) ↔ N ⊆ On) | |
| 15 | 13, 14 | mpbir 146 | . . . 4 ⊢ (N ⊆ On ∧ N ⊆ On) |
| 16 | xpss12 4823 | . . . 4 ⊢ ((N ⊆ On ∧ N ⊆ On) → (N × N) ⊆ (On × On)) | |
| 17 | 15, 16 | ax-mp 5 | . . 3 ⊢ (N × N) ⊆ (On × On) |
| 18 | dfss 3211 | . . 3 ⊢ ((N × N) ⊆ (On × On) ↔ (N × N) = ((N × N) ∩ (On × On))) | |
| 19 | 17, 18 | mpbi 145 | . 2 ⊢ (N × N) = ((N × N) ∩ (On × On)) |
| 20 | 6, 8, 19 | 3eqtr4i 2260 | 1 ⊢ dom +N = (N × N) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∖ cdif 3194 ∩ cin 3196 ⊆ wss 3197 ∅c0 3491 {csn 3666 Oncon0 4451 ωcom 4679 × cxp 4714 dom cdm 4716 ↾ cres 4718 Fn wfn 5309 +o coa 6549 Ncnpi 7447 +N cpli 7448 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-oadd 6556 df-ni 7479 df-pli 7480 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |