ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgioo GIF version

Theorem tgioo 13186
Description: The topology generated by open intervals of reals is the same as the open sets of the standard metric space on the reals. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
Hypotheses
Ref Expression
remet.1 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
tgioo.2 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
tgioo (topGen‘ran (,)) = 𝐽

Proof of Theorem tgioo
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑎 𝑏 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 remet.1 . . . 4 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
21rexmet 13181 . . 3 𝐷 ∈ (∞Met‘ℝ)
3 tgioo.2 . . . 4 𝐽 = (MetOpen‘𝐷)
43mopnval 13082 . . 3 (𝐷 ∈ (∞Met‘ℝ) → 𝐽 = (topGen‘ran (ball‘𝐷)))
52, 4ax-mp 5 . 2 𝐽 = (topGen‘ran (ball‘𝐷))
6 blex 13027 . . . . 5 (𝐷 ∈ (∞Met‘ℝ) → (ball‘𝐷) ∈ V)
72, 6ax-mp 5 . . . 4 (ball‘𝐷) ∈ V
87rnex 4871 . . 3 ran (ball‘𝐷) ∈ V
91blssioo 13185 . . 3 ran (ball‘𝐷) ⊆ ran (,)
10 elssuni 3817 . . . . . . 7 (𝑣 ∈ ran (,) → 𝑣 ran (,))
11 unirnioo 9909 . . . . . . 7 ℝ = ran (,)
1210, 11sseqtrrdi 3191 . . . . . 6 (𝑣 ∈ ran (,) → 𝑣 ⊆ ℝ)
13 retopbas 13163 . . . . . . . . . 10 ran (,) ∈ TopBases
1413a1i 9 . . . . . . . . 9 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → ran (,) ∈ TopBases)
15 simpl 108 . . . . . . . . 9 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → 𝑣 ∈ ran (,))
1612sselda 3142 . . . . . . . . . 10 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → 𝑥 ∈ ℝ)
17 1re 7898 . . . . . . . . . . . 12 1 ∈ ℝ
181bl2ioo 13182 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 1 ∈ ℝ) → (𝑥(ball‘𝐷)1) = ((𝑥 − 1)(,)(𝑥 + 1)))
1917, 18mpan2 422 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥(ball‘𝐷)1) = ((𝑥 − 1)(,)(𝑥 + 1)))
20 peano2rem 8165 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ)
2120rexrd 7948 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ*)
22 peano2re 8034 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
2322rexrd 7948 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ*)
24 ioorebasg 9911 . . . . . . . . . . . 12 (((𝑥 − 1) ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ*) → ((𝑥 − 1)(,)(𝑥 + 1)) ∈ ran (,))
2521, 23, 24syl2anc 409 . . . . . . . . . . 11 (𝑥 ∈ ℝ → ((𝑥 − 1)(,)(𝑥 + 1)) ∈ ran (,))
2619, 25eqeltrd 2243 . . . . . . . . . 10 (𝑥 ∈ ℝ → (𝑥(ball‘𝐷)1) ∈ ran (,))
2716, 26syl 14 . . . . . . . . 9 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → (𝑥(ball‘𝐷)1) ∈ ran (,))
28 simpr 109 . . . . . . . . . 10 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → 𝑥𝑣)
29 1rp 9593 . . . . . . . . . . . 12 1 ∈ ℝ+
30 blcntr 13056 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘ℝ) ∧ 𝑥 ∈ ℝ ∧ 1 ∈ ℝ+) → 𝑥 ∈ (𝑥(ball‘𝐷)1))
312, 29, 30mp3an13 1318 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 ∈ (𝑥(ball‘𝐷)1))
3216, 31syl 14 . . . . . . . . . 10 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → 𝑥 ∈ (𝑥(ball‘𝐷)1))
3328, 32elind 3307 . . . . . . . . 9 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → 𝑥 ∈ (𝑣 ∩ (𝑥(ball‘𝐷)1)))
34 basis2 12686 . . . . . . . . 9 (((ran (,) ∈ TopBases ∧ 𝑣 ∈ ran (,)) ∧ ((𝑥(ball‘𝐷)1) ∈ ran (,) ∧ 𝑥 ∈ (𝑣 ∩ (𝑥(ball‘𝐷)1)))) → ∃𝑧 ∈ ran (,)(𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))))
3514, 15, 27, 33, 34syl22anc 1229 . . . . . . . 8 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → ∃𝑧 ∈ ran (,)(𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))))
36 ioof 9907 . . . . . . . . . . 11 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
37 ffn 5337 . . . . . . . . . . 11 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
38 ovelrn 5990 . . . . . . . . . . 11 ((,) Fn (ℝ* × ℝ*) → (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏)))
3936, 37, 38mp2b 8 . . . . . . . . . 10 (𝑧 ∈ ran (,) ↔ ∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏))
40 eleq2 2230 . . . . . . . . . . . . . . 15 (𝑧 = (𝑎(,)𝑏) → (𝑥𝑧𝑥 ∈ (𝑎(,)𝑏)))
41 sseq1 3165 . . . . . . . . . . . . . . 15 (𝑧 = (𝑎(,)𝑏) → (𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)) ↔ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))))
4240, 41anbi12d 465 . . . . . . . . . . . . . 14 (𝑧 = (𝑎(,)𝑏) → ((𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) ↔ (𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)))))
43 inss2 3343 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 ∩ (𝑥(ball‘𝐷)1)) ⊆ (𝑥(ball‘𝐷)1)
44 sstr 3150 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)) ∧ (𝑣 ∩ (𝑥(ball‘𝐷)1)) ⊆ (𝑥(ball‘𝐷)1)) → (𝑎(,)𝑏) ⊆ (𝑥(ball‘𝐷)1))
4543, 44mpan2 422 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)) → (𝑎(,)𝑏) ⊆ (𝑥(ball‘𝐷)1))
4645adantl 275 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎(,)𝑏) ⊆ (𝑥(ball‘𝐷)1))
47 elioore 9848 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝑎(,)𝑏) → 𝑥 ∈ ℝ)
4847adantr 274 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → 𝑥 ∈ ℝ)
4948, 19syl 14 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑥(ball‘𝐷)1) = ((𝑥 − 1)(,)(𝑥 + 1)))
5046, 49sseqtrd 3180 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎(,)𝑏) ⊆ ((𝑥 − 1)(,)(𝑥 + 1)))
51 dfss 3130 . . . . . . . . . . . . . . . . . . 19 ((𝑎(,)𝑏) ⊆ ((𝑥 − 1)(,)(𝑥 + 1)) ↔ (𝑎(,)𝑏) = ((𝑎(,)𝑏) ∩ ((𝑥 − 1)(,)(𝑥 + 1))))
5250, 51sylib 121 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎(,)𝑏) = ((𝑎(,)𝑏) ∩ ((𝑥 − 1)(,)(𝑥 + 1))))
53 eliooxr 9863 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝑎(,)𝑏) → (𝑎 ∈ ℝ*𝑏 ∈ ℝ*))
5421, 23jca 304 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℝ → ((𝑥 − 1) ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ*))
5547, 54syl 14 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (𝑎(,)𝑏) → ((𝑥 − 1) ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ*))
56 iooinsup 11218 . . . . . . . . . . . . . . . . . . . 20 (((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) ∧ ((𝑥 − 1) ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ*)) → ((𝑎(,)𝑏) ∩ ((𝑥 − 1)(,)(𝑥 + 1))) = (sup({𝑎, (𝑥 − 1)}, ℝ*, < )(,)inf({𝑏, (𝑥 + 1)}, ℝ*, < )))
5753, 55, 56syl2anc 409 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (𝑎(,)𝑏) → ((𝑎(,)𝑏) ∩ ((𝑥 − 1)(,)(𝑥 + 1))) = (sup({𝑎, (𝑥 − 1)}, ℝ*, < )(,)inf({𝑏, (𝑥 + 1)}, ℝ*, < )))
5857adantr 274 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ((𝑎(,)𝑏) ∩ ((𝑥 − 1)(,)(𝑥 + 1))) = (sup({𝑎, (𝑥 − 1)}, ℝ*, < )(,)inf({𝑏, (𝑥 + 1)}, ℝ*, < )))
5952, 58eqtrd 2198 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎(,)𝑏) = (sup({𝑎, (𝑥 − 1)}, ℝ*, < )(,)inf({𝑏, (𝑥 + 1)}, ℝ*, < )))
60 mnfxr 7955 . . . . . . . . . . . . . . . . . . . 20 -∞ ∈ ℝ*
6160a1i 9 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → -∞ ∈ ℝ*)
6253adantr 274 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎 ∈ ℝ*𝑏 ∈ ℝ*))
6362simpld 111 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → 𝑎 ∈ ℝ*)
6448, 21syl 14 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑥 − 1) ∈ ℝ*)
65 xrmaxcl 11193 . . . . . . . . . . . . . . . . . . . 20 ((𝑎 ∈ ℝ* ∧ (𝑥 − 1) ∈ ℝ*) → sup({𝑎, (𝑥 − 1)}, ℝ*, < ) ∈ ℝ*)
6663, 64, 65syl2anc 409 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → sup({𝑎, (𝑥 − 1)}, ℝ*, < ) ∈ ℝ*)
6762simprd 113 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → 𝑏 ∈ ℝ*)
6848, 22syl 14 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑥 + 1) ∈ ℝ)
6968rexrd 7948 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑥 + 1) ∈ ℝ*)
70 xrmincl 11207 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ*) → inf({𝑏, (𝑥 + 1)}, ℝ*, < ) ∈ ℝ*)
7167, 69, 70syl2anc 409 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → inf({𝑏, (𝑥 + 1)}, ℝ*, < ) ∈ ℝ*)
7247, 20syl 14 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (𝑎(,)𝑏) → (𝑥 − 1) ∈ ℝ)
7372adantr 274 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑥 − 1) ∈ ℝ)
74 mnflt 9719 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 − 1) ∈ ℝ → -∞ < (𝑥 − 1))
7573, 74syl 14 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → -∞ < (𝑥 − 1))
76 xrmax2sup 11195 . . . . . . . . . . . . . . . . . . . . 21 ((𝑎 ∈ ℝ* ∧ (𝑥 − 1) ∈ ℝ*) → (𝑥 − 1) ≤ sup({𝑎, (𝑥 − 1)}, ℝ*, < ))
7763, 64, 76syl2anc 409 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑥 − 1) ≤ sup({𝑎, (𝑥 − 1)}, ℝ*, < ))
7861, 64, 66, 75, 77xrltletrd 9747 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → -∞ < sup({𝑎, (𝑥 − 1)}, ℝ*, < ))
79 simpl 108 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → 𝑥 ∈ (𝑎(,)𝑏))
8079, 59eleqtrd 2245 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → 𝑥 ∈ (sup({𝑎, (𝑥 − 1)}, ℝ*, < )(,)inf({𝑏, (𝑥 + 1)}, ℝ*, < )))
81 eliooxr 9863 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (sup({𝑎, (𝑥 − 1)}, ℝ*, < )(,)inf({𝑏, (𝑥 + 1)}, ℝ*, < )) → (sup({𝑎, (𝑥 − 1)}, ℝ*, < ) ∈ ℝ* ∧ inf({𝑏, (𝑥 + 1)}, ℝ*, < ) ∈ ℝ*))
82 elex2 2742 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (sup({𝑎, (𝑥 − 1)}, ℝ*, < )(,)inf({𝑏, (𝑥 + 1)}, ℝ*, < )) → ∃𝑤 𝑤 ∈ (sup({𝑎, (𝑥 − 1)}, ℝ*, < )(,)inf({𝑏, (𝑥 + 1)}, ℝ*, < )))
83 ioom 10196 . . . . . . . . . . . . . . . . . . . . . 22 ((sup({𝑎, (𝑥 − 1)}, ℝ*, < ) ∈ ℝ* ∧ inf({𝑏, (𝑥 + 1)}, ℝ*, < ) ∈ ℝ*) → (∃𝑤 𝑤 ∈ (sup({𝑎, (𝑥 − 1)}, ℝ*, < )(,)inf({𝑏, (𝑥 + 1)}, ℝ*, < )) ↔ sup({𝑎, (𝑥 − 1)}, ℝ*, < ) < inf({𝑏, (𝑥 + 1)}, ℝ*, < )))
8482, 83syl5ib 153 . . . . . . . . . . . . . . . . . . . . 21 ((sup({𝑎, (𝑥 − 1)}, ℝ*, < ) ∈ ℝ* ∧ inf({𝑏, (𝑥 + 1)}, ℝ*, < ) ∈ ℝ*) → (𝑥 ∈ (sup({𝑎, (𝑥 − 1)}, ℝ*, < )(,)inf({𝑏, (𝑥 + 1)}, ℝ*, < )) → sup({𝑎, (𝑥 − 1)}, ℝ*, < ) < inf({𝑏, (𝑥 + 1)}, ℝ*, < )))
8581, 84mpcom 36 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (sup({𝑎, (𝑥 − 1)}, ℝ*, < )(,)inf({𝑏, (𝑥 + 1)}, ℝ*, < )) → sup({𝑎, (𝑥 − 1)}, ℝ*, < ) < inf({𝑏, (𝑥 + 1)}, ℝ*, < ))
8680, 85syl 14 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → sup({𝑎, (𝑥 − 1)}, ℝ*, < ) < inf({𝑏, (𝑥 + 1)}, ℝ*, < ))
87 xrre2 9757 . . . . . . . . . . . . . . . . . . 19 (((-∞ ∈ ℝ* ∧ sup({𝑎, (𝑥 − 1)}, ℝ*, < ) ∈ ℝ* ∧ inf({𝑏, (𝑥 + 1)}, ℝ*, < ) ∈ ℝ*) ∧ (-∞ < sup({𝑎, (𝑥 − 1)}, ℝ*, < ) ∧ sup({𝑎, (𝑥 − 1)}, ℝ*, < ) < inf({𝑏, (𝑥 + 1)}, ℝ*, < ))) → sup({𝑎, (𝑥 − 1)}, ℝ*, < ) ∈ ℝ)
8861, 66, 71, 78, 86, 87syl32anc 1236 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → sup({𝑎, (𝑥 − 1)}, ℝ*, < ) ∈ ℝ)
89 mnfle 9728 . . . . . . . . . . . . . . . . . . . . 21 (sup({𝑎, (𝑥 − 1)}, ℝ*, < ) ∈ ℝ* → -∞ ≤ sup({𝑎, (𝑥 − 1)}, ℝ*, < ))
9066, 89syl 14 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → -∞ ≤ sup({𝑎, (𝑥 − 1)}, ℝ*, < ))
9161, 66, 71, 90, 86xrlelttrd 9746 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → -∞ < inf({𝑏, (𝑥 + 1)}, ℝ*, < ))
92 xrmin2inf 11209 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ*) → inf({𝑏, (𝑥 + 1)}, ℝ*, < ) ≤ (𝑥 + 1))
9367, 69, 92syl2anc 409 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → inf({𝑏, (𝑥 + 1)}, ℝ*, < ) ≤ (𝑥 + 1))
94 xrre 9756 . . . . . . . . . . . . . . . . . . 19 (((inf({𝑏, (𝑥 + 1)}, ℝ*, < ) ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ) ∧ (-∞ < inf({𝑏, (𝑥 + 1)}, ℝ*, < ) ∧ inf({𝑏, (𝑥 + 1)}, ℝ*, < ) ≤ (𝑥 + 1))) → inf({𝑏, (𝑥 + 1)}, ℝ*, < ) ∈ ℝ)
9571, 68, 91, 93, 94syl22anc 1229 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → inf({𝑏, (𝑥 + 1)}, ℝ*, < ) ∈ ℝ)
961ioo2blex 13184 . . . . . . . . . . . . . . . . . 18 ((sup({𝑎, (𝑥 − 1)}, ℝ*, < ) ∈ ℝ ∧ inf({𝑏, (𝑥 + 1)}, ℝ*, < ) ∈ ℝ) → (sup({𝑎, (𝑥 − 1)}, ℝ*, < )(,)inf({𝑏, (𝑥 + 1)}, ℝ*, < )) ∈ ran (ball‘𝐷))
9788, 95, 96syl2anc 409 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (sup({𝑎, (𝑥 − 1)}, ℝ*, < )(,)inf({𝑏, (𝑥 + 1)}, ℝ*, < )) ∈ ran (ball‘𝐷))
9859, 97eqeltrd 2243 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎(,)𝑏) ∈ ran (ball‘𝐷))
99 inss1 3342 . . . . . . . . . . . . . . . . . 18 (𝑣 ∩ (𝑥(ball‘𝐷)1)) ⊆ 𝑣
100 sstr 3150 . . . . . . . . . . . . . . . . . 18 (((𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)) ∧ (𝑣 ∩ (𝑥(ball‘𝐷)1)) ⊆ 𝑣) → (𝑎(,)𝑏) ⊆ 𝑣)
10199, 100mpan2 422 . . . . . . . . . . . . . . . . 17 ((𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)) → (𝑎(,)𝑏) ⊆ 𝑣)
102101adantl 275 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (𝑎(,)𝑏) ⊆ 𝑣)
103 sseq1 3165 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝑎(,)𝑏) → (𝑧𝑣 ↔ (𝑎(,)𝑏) ⊆ 𝑣))
10440, 103anbi12d 465 . . . . . . . . . . . . . . . . 17 (𝑧 = (𝑎(,)𝑏) → ((𝑥𝑧𝑧𝑣) ↔ (𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)))
105104rspcev 2830 . . . . . . . . . . . . . . . 16 (((𝑎(,)𝑏) ∈ ran (ball‘𝐷) ∧ (𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ 𝑣)) → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑣))
10698, 79, 102, 105syl12anc 1226 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑣))
107 blssex 13070 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (∞Met‘ℝ) ∧ 𝑥 ∈ ℝ) → (∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑣) ↔ ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣))
1082, 48, 107sylancr 411 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → (∃𝑧 ∈ ran (ball‘𝐷)(𝑥𝑧𝑧𝑣) ↔ ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣))
109106, 108mpbid 146 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝑎(,)𝑏) ∧ (𝑎(,)𝑏) ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)
11042, 109syl6bi 162 . . . . . . . . . . . . 13 (𝑧 = (𝑎(,)𝑏) → ((𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣))
111110a1i 9 . . . . . . . . . . . 12 ((𝑎 ∈ ℝ*𝑏 ∈ ℝ*) → (𝑧 = (𝑎(,)𝑏) → ((𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)))
112111rexlimivv 2589 . . . . . . . . . . 11 (∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) → ((𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣))
113112imp 123 . . . . . . . . . 10 ((∃𝑎 ∈ ℝ*𝑏 ∈ ℝ* 𝑧 = (𝑎(,)𝑏) ∧ (𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)
11439, 113sylanb 282 . . . . . . . . 9 ((𝑧 ∈ ran (,) ∧ (𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1)))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)
115114rexlimiva 2578 . . . . . . . 8 (∃𝑧 ∈ ran (,)(𝑥𝑧𝑧 ⊆ (𝑣 ∩ (𝑥(ball‘𝐷)1))) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)
11635, 115syl 14 . . . . . . 7 ((𝑣 ∈ ran (,) ∧ 𝑥𝑣) → ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)
117116ralrimiva 2539 . . . . . 6 (𝑣 ∈ ran (,) → ∀𝑥𝑣𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)
1183elmopn2 13089 . . . . . . 7 (𝐷 ∈ (∞Met‘ℝ) → (𝑣𝐽 ↔ (𝑣 ⊆ ℝ ∧ ∀𝑥𝑣𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣)))
1192, 118ax-mp 5 . . . . . 6 (𝑣𝐽 ↔ (𝑣 ⊆ ℝ ∧ ∀𝑥𝑣𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝑣))
12012, 117, 119sylanbrc 414 . . . . 5 (𝑣 ∈ ran (,) → 𝑣𝐽)
121120ssriv 3146 . . . 4 ran (,) ⊆ 𝐽
122121, 5sseqtri 3176 . . 3 ran (,) ⊆ (topGen‘ran (ball‘𝐷))
123 2basgeng 12722 . . 3 ((ran (ball‘𝐷) ∈ V ∧ ran (ball‘𝐷) ⊆ ran (,) ∧ ran (,) ⊆ (topGen‘ran (ball‘𝐷))) → (topGen‘ran (ball‘𝐷)) = (topGen‘ran (,)))
1248, 9, 122, 123mp3an 1327 . 2 (topGen‘ran (ball‘𝐷)) = (topGen‘ran (,))
1255, 124eqtr2i 2187 1 (topGen‘ran (,)) = 𝐽
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wex 1480  wcel 2136  wral 2444  wrex 2445  Vcvv 2726  cin 3115  wss 3116  𝒫 cpw 3559  {cpr 3577   cuni 3789   class class class wbr 3982   × cxp 4602  ran crn 4605  cres 4606  ccom 4608   Fn wfn 5183  wf 5184  cfv 5188  (class class class)co 5842  supcsup 6947  infcinf 6948  cr 7752  1c1 7754   + caddc 7756  -∞cmnf 7931  *cxr 7932   < clt 7933  cle 7934  cmin 8069  +crp 9589  (,)cioo 9824  abscabs 10939  topGenctg 12571  ∞Metcxmet 12620  ballcbl 12622  MetOpencmopn 12625  TopBasesctb 12680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-ioo 9828  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-bases 12681
This theorem is referenced by:  resubmet  13188  tgioo2cntop  13189
  Copyright terms: Public domain W3C validator