| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > drnf1 | GIF version | ||
| Description: Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.) |
| Ref | Expression |
|---|---|
| drex2.1 | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| drnf1 | ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drex2.1 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | dral1 1754 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) |
| 3 | 1, 2 | imbi12d 234 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → ((𝜑 → ∀𝑥𝜑) ↔ (𝜓 → ∀𝑦𝜓))) |
| 4 | 3 | dral1 1754 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜓 → ∀𝑦𝜓))) |
| 5 | df-nf 1485 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 6 | df-nf 1485 | . 2 ⊢ (Ⅎ𝑦𝜓 ↔ ∀𝑦(𝜓 → ∀𝑦𝜓)) | |
| 7 | 4, 5, 6 | 3bitr4g 223 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑦𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 Ⅎwnf 1484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 |
| This theorem is referenced by: drnfc1 2366 |
| Copyright terms: Public domain | W3C validator |