ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  drnf1 GIF version

Theorem drnf1 1721
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.)
Hypothesis
Ref Expression
drex2.1 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
drnf1 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑦𝜓))

Proof of Theorem drnf1
StepHypRef Expression
1 drex2.1 . . . 4 (∀𝑥 𝑥 = 𝑦 → (𝜑𝜓))
21dral1 1718 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓))
31, 2imbi12d 233 . . 3 (∀𝑥 𝑥 = 𝑦 → ((𝜑 → ∀𝑥𝜑) ↔ (𝜓 → ∀𝑦𝜓)))
43dral1 1718 . 2 (∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦(𝜓 → ∀𝑦𝜓)))
5 df-nf 1449 . 2 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
6 df-nf 1449 . 2 (Ⅎ𝑦𝜓 ↔ ∀𝑦(𝜓 → ∀𝑦𝜓))
74, 5, 63bitr4g 222 1 (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑦𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341  wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  drnfc1  2325
  Copyright terms: Public domain W3C validator