| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eleqtrid | GIF version | ||
| Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) | 
| Ref | Expression | 
|---|---|
| eleqtrid.1 | ⊢ 𝐴 ∈ 𝐵 | 
| eleqtrid.2 | ⊢ (𝜑 → 𝐵 = 𝐶) | 
| Ref | Expression | 
|---|---|
| eleqtrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleqtrid.1 | . . 3 ⊢ 𝐴 ∈ 𝐵 | |
| 2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | 
| 3 | eleqtrid.2 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 4 | 2, 3 | eleqtrd 2275 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 | 
| This theorem is referenced by: eleqtrrid 2286 opth1 4269 opth 4270 eqelsuc 4454 2omotaplemst 7325 txdis 14513 bj-nnelirr 15599 | 
| Copyright terms: Public domain | W3C validator |