ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleqtrid GIF version

Theorem eleqtrid 2282
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
eleqtrid.1 𝐴𝐵
eleqtrid.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
eleqtrid (𝜑𝐴𝐶)

Proof of Theorem eleqtrid
StepHypRef Expression
1 eleqtrid.1 . . 3 𝐴𝐵
21a1i 9 . 2 (𝜑𝐴𝐵)
3 eleqtrid.2 . 2 (𝜑𝐵 = 𝐶)
42, 3eleqtrd 2272 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-clel 2189
This theorem is referenced by:  eleqtrrid  2283  opth1  4265  opth  4266  eqelsuc  4450  2omotaplemst  7318  txdis  14445  bj-nnelirr  15445
  Copyright terms: Public domain W3C validator