ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleqtrid GIF version

Theorem eleqtrid 2259
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
eleqtrid.1 𝐴𝐵
eleqtrid.2 (𝜑𝐵 = 𝐶)
Assertion
Ref Expression
eleqtrid (𝜑𝐴𝐶)

Proof of Theorem eleqtrid
StepHypRef Expression
1 eleqtrid.1 . . 3 𝐴𝐵
21a1i 9 . 2 (𝜑𝐴𝐵)
3 eleqtrid.2 . 2 (𝜑𝐵 = 𝐶)
42, 3eleqtrd 2249 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-clel 2166
This theorem is referenced by:  eleqtrrid  2260  opth1  4221  opth  4222  eqelsuc  4404  txdis  13071  bj-nnelirr  13988
  Copyright terms: Public domain W3C validator