| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrrid | GIF version | ||
| Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrrid.1 | ⊢ 𝐵 = 𝐴 |
| eqeltrrid.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| eqeltrrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | eqcomi 2211 | . 2 ⊢ 𝐴 = 𝐵 |
| 3 | eqeltrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 4 | 2, 3 | eqeltrid 2294 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-clel 2203 |
| This theorem is referenced by: dmrnssfld 4960 cnvexg 5239 opabbrex 6012 offval 6189 resfunexgALT 6216 abrexexg 6226 abrexex2g 6228 opabex3d 6229 oprssdmm 6280 unfidisj 7045 residfi 7068 ssfii 7102 djuexb 7172 nqprlu 7695 iccshftr 10151 iccshftl 10153 iccdil 10155 icccntr 10157 mertenslem2 11962 exprmfct 12575 infpnlem1 12797 4sqlem13m 12841 ennnfonelemg 12889 prdsval 13220 prdsbaslemss 13221 grpidvalg 13320 igsumvalx 13336 grppropstrg 13466 releqgg 13671 eqgex 13672 0opn 14593 difopn 14695 tgrest 14756 txbasex 14844 txdis1cn 14865 cnmptid 14868 cnmptc 14869 cnmpt1st 14875 cnmpt2nd 14876 cnmpt2c 14877 hmeoima 14897 hmeocld 14899 fsumcncntop 15154 expcn 15156 plycoeid3 15344 |
| Copyright terms: Public domain | W3C validator |