Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqeltrrid | GIF version |
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eqeltrrid.1 | ⊢ 𝐵 = 𝐴 |
eqeltrrid.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
eqeltrrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
2 | 1 | eqcomi 2169 | . 2 ⊢ 𝐴 = 𝐵 |
3 | eqeltrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
4 | 2, 3 | eqeltrid 2253 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: dmrnssfld 4867 cnvexg 5141 opabbrex 5886 offval 6057 resfunexgALT 6076 abrexexg 6086 abrexex2g 6088 opabex3d 6089 oprssdmm 6139 unfidisj 6887 ssfii 6939 djuexb 7009 nqprlu 7488 iccshftr 9930 iccshftl 9932 iccdil 9934 icccntr 9936 mertenslem2 11477 exprmfct 12070 infpnlem1 12289 ennnfonelemg 12336 grpidvalg 12604 0opn 12654 difopn 12758 tgrest 12819 txbasex 12907 txdis1cn 12928 cnmptid 12931 cnmptc 12932 cnmpt1st 12938 cnmpt2nd 12939 cnmpt2c 12940 hmeoima 12960 hmeocld 12962 fsumcncntop 13206 |
Copyright terms: Public domain | W3C validator |