| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrrid | GIF version | ||
| Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrrid.1 | ⊢ 𝐵 = 𝐴 |
| eqeltrrid.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| eqeltrrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | eqcomi 2200 | . 2 ⊢ 𝐴 = 𝐵 |
| 3 | eqeltrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 4 | 2, 3 | eqeltrid 2283 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: dmrnssfld 4930 cnvexg 5208 opabbrex 5970 offval 6147 resfunexgALT 6174 abrexexg 6184 abrexex2g 6186 opabex3d 6187 oprssdmm 6238 unfidisj 6992 residfi 7015 ssfii 7049 djuexb 7119 nqprlu 7633 iccshftr 10088 iccshftl 10090 iccdil 10092 icccntr 10094 mertenslem2 11720 exprmfct 12333 infpnlem1 12555 4sqlem13m 12599 ennnfonelemg 12647 prdsval 12977 prdsbaslemss 12978 grpidvalg 13077 igsumvalx 13093 grppropstrg 13223 releqgg 13428 eqgex 13429 0opn 14350 difopn 14452 tgrest 14513 txbasex 14601 txdis1cn 14622 cnmptid 14625 cnmptc 14626 cnmpt1st 14632 cnmpt2nd 14633 cnmpt2c 14634 hmeoima 14654 hmeocld 14656 fsumcncntop 14911 expcn 14913 plycoeid3 15101 |
| Copyright terms: Public domain | W3C validator |