| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrrid | GIF version | ||
| Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrrid.1 | ⊢ 𝐵 = 𝐴 |
| eqeltrrid.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| eqeltrrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | eqcomi 2200 | . 2 ⊢ 𝐴 = 𝐵 |
| 3 | eqeltrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 4 | 2, 3 | eqeltrid 2283 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: dmrnssfld 4930 cnvexg 5208 opabbrex 5970 offval 6147 resfunexgALT 6174 abrexexg 6184 abrexex2g 6186 opabex3d 6187 oprssdmm 6238 unfidisj 6992 residfi 7015 ssfii 7049 djuexb 7119 nqprlu 7631 iccshftr 10086 iccshftl 10088 iccdil 10090 icccntr 10092 mertenslem2 11718 exprmfct 12331 infpnlem1 12553 4sqlem13m 12597 ennnfonelemg 12645 prdsval 12975 prdsbaslemss 12976 grpidvalg 13075 igsumvalx 13091 grppropstrg 13221 releqgg 13426 eqgex 13427 0opn 14326 difopn 14428 tgrest 14489 txbasex 14577 txdis1cn 14598 cnmptid 14601 cnmptc 14602 cnmpt1st 14608 cnmpt2nd 14609 cnmpt2c 14610 hmeoima 14630 hmeocld 14632 fsumcncntop 14887 expcn 14889 plycoeid3 15077 |
| Copyright terms: Public domain | W3C validator |