| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrrid | GIF version | ||
| Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrrid.1 | ⊢ 𝐵 = 𝐴 |
| eqeltrrid.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| eqeltrrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | eqcomi 2233 | . 2 ⊢ 𝐴 = 𝐵 |
| 3 | eqeltrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 4 | 2, 3 | eqeltrid 2316 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: dmrnssfld 4986 cnvexg 5265 opabbrex 6047 offval 6224 resfunexgALT 6251 abrexexg 6261 abrexex2g 6263 opabex3d 6264 oprssdmm 6315 unfidisj 7080 residfi 7103 ssfii 7137 djuexb 7207 nqprlu 7730 iccshftr 10186 iccshftl 10188 iccdil 10190 icccntr 10192 mertenslem2 12042 exprmfct 12655 infpnlem1 12877 4sqlem13m 12921 ennnfonelemg 12969 prdsval 13301 prdsbaslemss 13302 grpidvalg 13401 igsumvalx 13417 grppropstrg 13547 releqgg 13752 eqgex 13753 0opn 14674 difopn 14776 tgrest 14837 txbasex 14925 txdis1cn 14946 cnmptid 14949 cnmptc 14950 cnmpt1st 14956 cnmpt2nd 14957 cnmpt2c 14958 hmeoima 14978 hmeocld 14980 fsumcncntop 15235 expcn 15237 plycoeid3 15425 |
| Copyright terms: Public domain | W3C validator |