| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrrid | GIF version | ||
| Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrrid.1 | ⊢ 𝐵 = 𝐴 |
| eqeltrrid.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| eqeltrrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | eqcomi 2208 | . 2 ⊢ 𝐴 = 𝐵 |
| 3 | eqeltrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 4 | 2, 3 | eqeltrid 2291 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-clel 2200 |
| This theorem is referenced by: dmrnssfld 4940 cnvexg 5219 opabbrex 5988 offval 6165 resfunexgALT 6192 abrexexg 6202 abrexex2g 6204 opabex3d 6205 oprssdmm 6256 unfidisj 7018 residfi 7041 ssfii 7075 djuexb 7145 nqprlu 7659 iccshftr 10115 iccshftl 10117 iccdil 10119 icccntr 10121 mertenslem2 11818 exprmfct 12431 infpnlem1 12653 4sqlem13m 12697 ennnfonelemg 12745 prdsval 13076 prdsbaslemss 13077 grpidvalg 13176 igsumvalx 13192 grppropstrg 13322 releqgg 13527 eqgex 13528 0opn 14449 difopn 14551 tgrest 14612 txbasex 14700 txdis1cn 14721 cnmptid 14724 cnmptc 14725 cnmpt1st 14731 cnmpt2nd 14732 cnmpt2c 14733 hmeoima 14753 hmeocld 14755 fsumcncntop 15010 expcn 15012 plycoeid3 15200 |
| Copyright terms: Public domain | W3C validator |