| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqeltrrid | GIF version | ||
| Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eqeltrrid.1 | ⊢ 𝐵 = 𝐴 |
| eqeltrrid.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| eqeltrrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeltrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
| 2 | 1 | eqcomi 2209 | . 2 ⊢ 𝐴 = 𝐵 |
| 3 | eqeltrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 4 | 2, 3 | eqeltrid 2292 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: dmrnssfld 4941 cnvexg 5220 opabbrex 5989 offval 6166 resfunexgALT 6193 abrexexg 6203 abrexex2g 6205 opabex3d 6206 oprssdmm 6257 unfidisj 7019 residfi 7042 ssfii 7076 djuexb 7146 nqprlu 7660 iccshftr 10116 iccshftl 10118 iccdil 10120 icccntr 10122 mertenslem2 11847 exprmfct 12460 infpnlem1 12682 4sqlem13m 12726 ennnfonelemg 12774 prdsval 13105 prdsbaslemss 13106 grpidvalg 13205 igsumvalx 13221 grppropstrg 13351 releqgg 13556 eqgex 13557 0opn 14478 difopn 14580 tgrest 14641 txbasex 14729 txdis1cn 14750 cnmptid 14753 cnmptc 14754 cnmpt1st 14760 cnmpt2nd 14761 cnmpt2c 14762 hmeoima 14782 hmeocld 14784 fsumcncntop 15039 expcn 15041 plycoeid3 15229 |
| Copyright terms: Public domain | W3C validator |