ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeltrrid GIF version

Theorem eqeltrrid 2265
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
eqeltrrid.1 𝐵 = 𝐴
eqeltrrid.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
eqeltrrid (𝜑𝐴𝐶)

Proof of Theorem eqeltrrid
StepHypRef Expression
1 eqeltrrid.1 . . 3 𝐵 = 𝐴
21eqcomi 2181 . 2 𝐴 = 𝐵
3 eqeltrrid.2 . 2 (𝜑𝐵𝐶)
42, 3eqeltrid 2264 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170  df-clel 2173
This theorem is referenced by:  dmrnssfld  4892  cnvexg  5168  opabbrex  5921  offval  6092  resfunexgALT  6111  abrexexg  6121  abrexex2g  6123  opabex3d  6124  oprssdmm  6174  unfidisj  6923  ssfii  6975  djuexb  7045  nqprlu  7548  iccshftr  9996  iccshftl  9998  iccdil  10000  icccntr  10002  mertenslem2  11546  exprmfct  12140  infpnlem1  12359  ennnfonelemg  12406  grpidvalg  12797  grppropstrg  12900  releqgg  13085  0opn  13545  difopn  13647  tgrest  13708  txbasex  13796  txdis1cn  13817  cnmptid  13820  cnmptc  13821  cnmpt1st  13827  cnmpt2nd  13828  cnmpt2c  13829  hmeoima  13849  hmeocld  13851  fsumcncntop  14095
  Copyright terms: Public domain W3C validator