ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqeltrrid GIF version

Theorem eqeltrrid 2265
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
eqeltrrid.1 𝐵 = 𝐴
eqeltrrid.2 (𝜑𝐵𝐶)
Assertion
Ref Expression
eqeltrrid (𝜑𝐴𝐶)

Proof of Theorem eqeltrrid
StepHypRef Expression
1 eqeltrrid.1 . . 3 𝐵 = 𝐴
21eqcomi 2181 . 2 𝐴 = 𝐵
3 eqeltrrid.2 . 2 (𝜑𝐵𝐶)
42, 3eqeltrid 2264 1 (𝜑𝐴𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-17 1526  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170  df-clel 2173
This theorem is referenced by:  dmrnssfld  4890  cnvexg  5166  opabbrex  5918  offval  6089  resfunexgALT  6108  abrexexg  6118  abrexex2g  6120  opabex3d  6121  oprssdmm  6171  unfidisj  6920  ssfii  6972  djuexb  7042  nqprlu  7545  iccshftr  9993  iccshftl  9995  iccdil  9997  icccntr  9999  mertenslem2  11543  exprmfct  12137  infpnlem1  12356  ennnfonelemg  12403  grpidvalg  12791  grppropstrg  12894  releqgg  13078  0opn  13476  difopn  13578  tgrest  13639  txbasex  13727  txdis1cn  13748  cnmptid  13751  cnmptc  13752  cnmpt1st  13758  cnmpt2nd  13759  cnmpt2c  13760  hmeoima  13780  hmeocld  13782  fsumcncntop  14026
  Copyright terms: Public domain W3C validator