![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqeltrrid | GIF version |
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eqeltrrid.1 | ⊢ 𝐵 = 𝐴 |
eqeltrrid.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
eqeltrrid | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeltrrid.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
2 | 1 | eqcomi 2181 | . 2 ⊢ 𝐴 = 𝐵 |
3 | eqeltrrid.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
4 | 2, 3 | eqeltrid 2264 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 df-clel 2173 |
This theorem is referenced by: dmrnssfld 4892 cnvexg 5168 opabbrex 5922 offval 6093 resfunexgALT 6112 abrexexg 6122 abrexex2g 6124 opabex3d 6125 oprssdmm 6175 unfidisj 6924 ssfii 6976 djuexb 7046 nqprlu 7549 iccshftr 9997 iccshftl 9999 iccdil 10001 icccntr 10003 mertenslem2 11547 exprmfct 12141 infpnlem1 12360 ennnfonelemg 12407 grpidvalg 12799 grppropstrg 12903 releqgg 13094 eqgex 13095 0opn 13694 difopn 13796 tgrest 13857 txbasex 13945 txdis1cn 13966 cnmptid 13969 cnmptc 13970 cnmpt1st 13976 cnmpt2nd 13977 cnmpt2c 13978 hmeoima 13998 hmeocld 14000 fsumcncntop 14244 |
Copyright terms: Public domain | W3C validator |