ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2omotaplemst GIF version

Theorem 2omotaplemst 7325
Description: Lemma for 2omotap 7326. (Contributed by Jim Kingdon, 6-Feb-2025.)
Assertion
Ref Expression
2omotaplemst ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → 𝜑)
Distinct variable group:   𝜑,𝑟

Proof of Theorem 2omotaplemst
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2oneel 7323 . . . 4 ⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)}
2 2omotaplemap 7324 . . . . . 6 (¬ ¬ 𝜑 → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} TAp 2o)
32adantl 277 . . . . 5 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} TAp 2o)
4 2onn 6579 . . . . . . . . . 10 2o ∈ ω
54elexi 2775 . . . . . . . . 9 2o ∈ V
65, 5xpex 4778 . . . . . . . 8 (2o × 2o) ∈ V
7 opabssxp 4737 . . . . . . . 8 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ⊆ (2o × 2o)
86, 7ssexi 4171 . . . . . . 7 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ∈ V
98a1i 9 . . . . . 6 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ∈ V)
10 opabssxp 4737 . . . . . . . 8 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ⊆ (2o × 2o)
116, 10ssexi 4171 . . . . . . 7 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ∈ V
1211a1i 9 . . . . . 6 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ∈ V)
13 simpl 109 . . . . . 6 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → ∃*𝑟 𝑟 TAp 2o)
14 2onetap 7322 . . . . . . 7 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o
1514a1i 9 . . . . . 6 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o)
16 tapeq1 7319 . . . . . . 7 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} → (𝑟 TAp 2o ↔ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o))
17 tapeq1 7319 . . . . . . 7 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} → (𝑟 TAp 2o ↔ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} TAp 2o))
1816, 17mob 2946 . . . . . 6 ((({⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ∈ V ∧ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ∈ V) ∧ ∃*𝑟 𝑟 TAp 2o ∧ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o) → ({⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ↔ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} TAp 2o))
199, 12, 13, 15, 18syl211anc 1255 . . . . 5 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → ({⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ↔ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} TAp 2o))
203, 19mpbird 167 . . . 4 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))})
211, 20eleqtrid 2285 . . 3 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → ⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))})
22 0lt2o 6499 . . . 4 ∅ ∈ 2o
23 1lt2o 6500 . . . 4 1o ∈ 2o
24 neeq1 2380 . . . . . 6 (𝑢 = ∅ → (𝑢𝑣 ↔ ∅ ≠ 𝑣))
2524anbi2d 464 . . . . 5 (𝑢 = ∅ → ((𝜑𝑢𝑣) ↔ (𝜑 ∧ ∅ ≠ 𝑣)))
26 neeq2 2381 . . . . . 6 (𝑣 = 1o → (∅ ≠ 𝑣 ↔ ∅ ≠ 1o))
2726anbi2d 464 . . . . 5 (𝑣 = 1o → ((𝜑 ∧ ∅ ≠ 𝑣) ↔ (𝜑 ∧ ∅ ≠ 1o)))
2825, 27opelopab2 4305 . . . 4 ((∅ ∈ 2o ∧ 1o ∈ 2o) → (⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ↔ (𝜑 ∧ ∅ ≠ 1o)))
2922, 23, 28mp2an 426 . . 3 (⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ↔ (𝜑 ∧ ∅ ≠ 1o))
3021, 29sylib 122 . 2 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → (𝜑 ∧ ∅ ≠ 1o))
3130simpld 112 1 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  ∃*wmo 2046  wcel 2167  wne 2367  Vcvv 2763  c0 3450  cop 3625  {copab 4093  ωcom 4626   × cxp 4661  1oc1o 6467  2oc2o 6468   TAp wtap 7316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-1o 6474  df-2o 6475  df-pap 7315  df-tap 7317
This theorem is referenced by:  2omotap  7326
  Copyright terms: Public domain W3C validator