ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2omotaplemst GIF version

Theorem 2omotaplemst 7318
Description: Lemma for 2omotap 7319. (Contributed by Jim Kingdon, 6-Feb-2025.)
Assertion
Ref Expression
2omotaplemst ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → 𝜑)
Distinct variable group:   𝜑,𝑟

Proof of Theorem 2omotaplemst
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2oneel 7316 . . . 4 ⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)}
2 2omotaplemap 7317 . . . . . 6 (¬ ¬ 𝜑 → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} TAp 2o)
32adantl 277 . . . . 5 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} TAp 2o)
4 2onn 6574 . . . . . . . . . 10 2o ∈ ω
54elexi 2772 . . . . . . . . 9 2o ∈ V
65, 5xpex 4774 . . . . . . . 8 (2o × 2o) ∈ V
7 opabssxp 4733 . . . . . . . 8 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ⊆ (2o × 2o)
86, 7ssexi 4167 . . . . . . 7 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ∈ V
98a1i 9 . . . . . 6 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ∈ V)
10 opabssxp 4733 . . . . . . . 8 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ⊆ (2o × 2o)
116, 10ssexi 4167 . . . . . . 7 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ∈ V
1211a1i 9 . . . . . 6 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ∈ V)
13 simpl 109 . . . . . 6 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → ∃*𝑟 𝑟 TAp 2o)
14 2onetap 7315 . . . . . . 7 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o
1514a1i 9 . . . . . 6 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o)
16 tapeq1 7312 . . . . . . 7 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} → (𝑟 TAp 2o ↔ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o))
17 tapeq1 7312 . . . . . . 7 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} → (𝑟 TAp 2o ↔ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} TAp 2o))
1816, 17mob 2942 . . . . . 6 ((({⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ∈ V ∧ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ∈ V) ∧ ∃*𝑟 𝑟 TAp 2o ∧ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o) → ({⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ↔ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} TAp 2o))
199, 12, 13, 15, 18syl211anc 1255 . . . . 5 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → ({⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ↔ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} TAp 2o))
203, 19mpbird 167 . . . 4 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))})
211, 20eleqtrid 2282 . . 3 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → ⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))})
22 0lt2o 6494 . . . 4 ∅ ∈ 2o
23 1lt2o 6495 . . . 4 1o ∈ 2o
24 neeq1 2377 . . . . . 6 (𝑢 = ∅ → (𝑢𝑣 ↔ ∅ ≠ 𝑣))
2524anbi2d 464 . . . . 5 (𝑢 = ∅ → ((𝜑𝑢𝑣) ↔ (𝜑 ∧ ∅ ≠ 𝑣)))
26 neeq2 2378 . . . . . 6 (𝑣 = 1o → (∅ ≠ 𝑣 ↔ ∅ ≠ 1o))
2726anbi2d 464 . . . . 5 (𝑣 = 1o → ((𝜑 ∧ ∅ ≠ 𝑣) ↔ (𝜑 ∧ ∅ ≠ 1o)))
2825, 27opelopab2 4301 . . . 4 ((∅ ∈ 2o ∧ 1o ∈ 2o) → (⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ↔ (𝜑 ∧ ∅ ≠ 1o)))
2922, 23, 28mp2an 426 . . 3 (⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ↔ (𝜑 ∧ ∅ ≠ 1o))
3021, 29sylib 122 . 2 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → (𝜑 ∧ ∅ ≠ 1o))
3130simpld 112 1 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1364  ∃*wmo 2043  wcel 2164  wne 2364  Vcvv 2760  c0 3446  cop 3621  {copab 4089  ωcom 4622   × cxp 4657  1oc1o 6462  2oc2o 6463   TAp wtap 7309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-tr 4128  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-1o 6469  df-2o 6470  df-pap 7308  df-tap 7310
This theorem is referenced by:  2omotap  7319
  Copyright terms: Public domain W3C validator