ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2omotaplemst GIF version

Theorem 2omotaplemst 7440
Description: Lemma for 2omotap 7441. (Contributed by Jim Kingdon, 6-Feb-2025.)
Assertion
Ref Expression
2omotaplemst ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → 𝜑)
Distinct variable group:   𝜑,𝑟

Proof of Theorem 2omotaplemst
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2oneel 7438 . . . 4 ⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)}
2 2omotaplemap 7439 . . . . . 6 (¬ ¬ 𝜑 → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} TAp 2o)
32adantl 277 . . . . 5 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} TAp 2o)
4 2onn 6665 . . . . . . . . . 10 2o ∈ ω
54elexi 2812 . . . . . . . . 9 2o ∈ V
65, 5xpex 4833 . . . . . . . 8 (2o × 2o) ∈ V
7 opabssxp 4792 . . . . . . . 8 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ⊆ (2o × 2o)
86, 7ssexi 4221 . . . . . . 7 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ∈ V
98a1i 9 . . . . . 6 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ∈ V)
10 opabssxp 4792 . . . . . . . 8 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ⊆ (2o × 2o)
116, 10ssexi 4221 . . . . . . 7 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ∈ V
1211a1i 9 . . . . . 6 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ∈ V)
13 simpl 109 . . . . . 6 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → ∃*𝑟 𝑟 TAp 2o)
14 2onetap 7437 . . . . . . 7 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o
1514a1i 9 . . . . . 6 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o)
16 tapeq1 7434 . . . . . . 7 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} → (𝑟 TAp 2o ↔ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o))
17 tapeq1 7434 . . . . . . 7 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} → (𝑟 TAp 2o ↔ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} TAp 2o))
1816, 17mob 2985 . . . . . 6 ((({⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ∈ V ∧ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ∈ V) ∧ ∃*𝑟 𝑟 TAp 2o ∧ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o) → ({⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ↔ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} TAp 2o))
199, 12, 13, 15, 18syl211anc 1277 . . . . 5 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → ({⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ↔ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} TAp 2o))
203, 19mpbird 167 . . . 4 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))})
211, 20eleqtrid 2318 . . 3 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → ⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))})
22 0lt2o 6585 . . . 4 ∅ ∈ 2o
23 1lt2o 6586 . . . 4 1o ∈ 2o
24 neeq1 2413 . . . . . 6 (𝑢 = ∅ → (𝑢𝑣 ↔ ∅ ≠ 𝑣))
2524anbi2d 464 . . . . 5 (𝑢 = ∅ → ((𝜑𝑢𝑣) ↔ (𝜑 ∧ ∅ ≠ 𝑣)))
26 neeq2 2414 . . . . . 6 (𝑣 = 1o → (∅ ≠ 𝑣 ↔ ∅ ≠ 1o))
2726anbi2d 464 . . . . 5 (𝑣 = 1o → ((𝜑 ∧ ∅ ≠ 𝑣) ↔ (𝜑 ∧ ∅ ≠ 1o)))
2825, 27opelopab2 4358 . . . 4 ((∅ ∈ 2o ∧ 1o ∈ 2o) → (⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ↔ (𝜑 ∧ ∅ ≠ 1o)))
2922, 23, 28mp2an 426 . . 3 (⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ↔ (𝜑 ∧ ∅ ≠ 1o))
3021, 29sylib 122 . 2 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → (𝜑 ∧ ∅ ≠ 1o))
3130simpld 112 1 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1395  ∃*wmo 2078  wcel 2200  wne 2400  Vcvv 2799  c0 3491  cop 3669  {copab 4143  ωcom 4681   × cxp 4716  1oc1o 6553  2oc2o 6554   TAp wtap 7431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-tr 4182  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-1o 6560  df-2o 6561  df-pap 7430  df-tap 7432
This theorem is referenced by:  2omotap  7441
  Copyright terms: Public domain W3C validator