ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2omotaplemst GIF version

Theorem 2omotaplemst 7257
Description: Lemma for 2omotap 7258. (Contributed by Jim Kingdon, 6-Feb-2025.)
Assertion
Ref Expression
2omotaplemst ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → 𝜑)
Distinct variable group:   𝜑,𝑟

Proof of Theorem 2omotaplemst
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2oneel 7255 . . . 4 ⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)}
2 2omotaplemap 7256 . . . . . 6 (¬ ¬ 𝜑 → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} TAp 2o)
32adantl 277 . . . . 5 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} TAp 2o)
4 2onn 6522 . . . . . . . . . 10 2o ∈ ω
54elexi 2750 . . . . . . . . 9 2o ∈ V
65, 5xpex 4742 . . . . . . . 8 (2o × 2o) ∈ V
7 opabssxp 4701 . . . . . . . 8 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ⊆ (2o × 2o)
86, 7ssexi 4142 . . . . . . 7 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ∈ V
98a1i 9 . . . . . 6 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ∈ V)
10 opabssxp 4701 . . . . . . . 8 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ⊆ (2o × 2o)
116, 10ssexi 4142 . . . . . . 7 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ∈ V
1211a1i 9 . . . . . 6 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ∈ V)
13 simpl 109 . . . . . 6 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → ∃*𝑟 𝑟 TAp 2o)
14 2onetap 7254 . . . . . . 7 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o
1514a1i 9 . . . . . 6 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o)
16 tapeq1 7251 . . . . . . 7 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} → (𝑟 TAp 2o ↔ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o))
17 tapeq1 7251 . . . . . . 7 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} → (𝑟 TAp 2o ↔ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} TAp 2o))
1816, 17mob 2920 . . . . . 6 ((({⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ∈ V ∧ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ∈ V) ∧ ∃*𝑟 𝑟 TAp 2o ∧ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o) → ({⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ↔ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} TAp 2o))
199, 12, 13, 15, 18syl211anc 1244 . . . . 5 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → ({⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ↔ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} TAp 2o))
203, 19mpbird 167 . . . 4 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))})
211, 20eleqtrid 2266 . . 3 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → ⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))})
22 0lt2o 6442 . . . 4 ∅ ∈ 2o
23 1lt2o 6443 . . . 4 1o ∈ 2o
24 neeq1 2360 . . . . . 6 (𝑢 = ∅ → (𝑢𝑣 ↔ ∅ ≠ 𝑣))
2524anbi2d 464 . . . . 5 (𝑢 = ∅ → ((𝜑𝑢𝑣) ↔ (𝜑 ∧ ∅ ≠ 𝑣)))
26 neeq2 2361 . . . . . 6 (𝑣 = 1o → (∅ ≠ 𝑣 ↔ ∅ ≠ 1o))
2726anbi2d 464 . . . . 5 (𝑣 = 1o → ((𝜑 ∧ ∅ ≠ 𝑣) ↔ (𝜑 ∧ ∅ ≠ 1o)))
2825, 27opelopab2 4271 . . . 4 ((∅ ∈ 2o ∧ 1o ∈ 2o) → (⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ↔ (𝜑 ∧ ∅ ≠ 1o)))
2922, 23, 28mp2an 426 . . 3 (⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ↔ (𝜑 ∧ ∅ ≠ 1o))
3021, 29sylib 122 . 2 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → (𝜑 ∧ ∅ ≠ 1o))
3130simpld 112 1 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1353  ∃*wmo 2027  wcel 2148  wne 2347  Vcvv 2738  c0 3423  cop 3596  {copab 4064  ωcom 4590   × cxp 4625  1oc1o 6410  2oc2o 6411   TAp wtap 7248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-tr 4103  df-iord 4367  df-on 4369  df-suc 4372  df-iom 4591  df-xp 4633  df-1o 6417  df-2o 6418  df-pap 7247  df-tap 7249
This theorem is referenced by:  2omotap  7258
  Copyright terms: Public domain W3C validator