ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2omotaplemst GIF version

Theorem 2omotaplemst 7390
Description: Lemma for 2omotap 7391. (Contributed by Jim Kingdon, 6-Feb-2025.)
Assertion
Ref Expression
2omotaplemst ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → 𝜑)
Distinct variable group:   𝜑,𝑟

Proof of Theorem 2omotaplemst
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2oneel 7388 . . . 4 ⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)}
2 2omotaplemap 7389 . . . . . 6 (¬ ¬ 𝜑 → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} TAp 2o)
32adantl 277 . . . . 5 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} TAp 2o)
4 2onn 6620 . . . . . . . . . 10 2o ∈ ω
54elexi 2786 . . . . . . . . 9 2o ∈ V
65, 5xpex 4798 . . . . . . . 8 (2o × 2o) ∈ V
7 opabssxp 4757 . . . . . . . 8 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ⊆ (2o × 2o)
86, 7ssexi 4190 . . . . . . 7 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ∈ V
98a1i 9 . . . . . 6 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ∈ V)
10 opabssxp 4757 . . . . . . . 8 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ⊆ (2o × 2o)
116, 10ssexi 4190 . . . . . . 7 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ∈ V
1211a1i 9 . . . . . 6 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ∈ V)
13 simpl 109 . . . . . 6 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → ∃*𝑟 𝑟 TAp 2o)
14 2onetap 7387 . . . . . . 7 {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o
1514a1i 9 . . . . . 6 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o)
16 tapeq1 7384 . . . . . . 7 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} → (𝑟 TAp 2o ↔ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o))
17 tapeq1 7384 . . . . . . 7 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} → (𝑟 TAp 2o ↔ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} TAp 2o))
1816, 17mob 2959 . . . . . 6 ((({⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} ∈ V ∧ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ∈ V) ∧ ∃*𝑟 𝑟 TAp 2o ∧ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} TAp 2o) → ({⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ↔ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} TAp 2o))
199, 12, 13, 15, 18syl211anc 1256 . . . . 5 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → ({⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ↔ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} TAp 2o))
203, 19mpbird 167 . . . 4 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ 𝑢𝑣)} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))})
211, 20eleqtrid 2295 . . 3 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → ⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))})
22 0lt2o 6540 . . . 4 ∅ ∈ 2o
23 1lt2o 6541 . . . 4 1o ∈ 2o
24 neeq1 2390 . . . . . 6 (𝑢 = ∅ → (𝑢𝑣 ↔ ∅ ≠ 𝑣))
2524anbi2d 464 . . . . 5 (𝑢 = ∅ → ((𝜑𝑢𝑣) ↔ (𝜑 ∧ ∅ ≠ 𝑣)))
26 neeq2 2391 . . . . . 6 (𝑣 = 1o → (∅ ≠ 𝑣 ↔ ∅ ≠ 1o))
2726anbi2d 464 . . . . 5 (𝑣 = 1o → ((𝜑 ∧ ∅ ≠ 𝑣) ↔ (𝜑 ∧ ∅ ≠ 1o)))
2825, 27opelopab2 4325 . . . 4 ((∅ ∈ 2o ∧ 1o ∈ 2o) → (⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ↔ (𝜑 ∧ ∅ ≠ 1o)))
2922, 23, 28mp2an 426 . . 3 (⟨∅, 1o⟩ ∈ {⟨𝑢, 𝑣⟩ ∣ ((𝑢 ∈ 2o𝑣 ∈ 2o) ∧ (𝜑𝑢𝑣))} ↔ (𝜑 ∧ ∅ ≠ 1o))
3021, 29sylib 122 . 2 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → (𝜑 ∧ ∅ ≠ 1o))
3130simpld 112 1 ((∃*𝑟 𝑟 TAp 2o ∧ ¬ ¬ 𝜑) → 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1373  ∃*wmo 2056  wcel 2177  wne 2377  Vcvv 2773  c0 3464  cop 3641  {copab 4112  ωcom 4646   × cxp 4681  1oc1o 6508  2oc2o 6509   TAp wtap 7381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-tr 4151  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-1o 6515  df-2o 6516  df-pap 7380  df-tap 7382
This theorem is referenced by:  2omotap  7391
  Copyright terms: Public domain W3C validator