ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txdis GIF version

Theorem txdis 14445
Description: The topological product of discrete spaces is discrete. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
txdis ((𝐴𝑉𝐵𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) = 𝒫 (𝐴 × 𝐵))

Proof of Theorem txdis
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 14253 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
2 distop 14253 . . . . 5 (𝐵𝑊 → 𝒫 𝐵 ∈ Top)
3 unipw 4246 . . . . . . 7 𝒫 𝐴 = 𝐴
43eqcomi 2197 . . . . . 6 𝐴 = 𝒫 𝐴
5 unipw 4246 . . . . . . 7 𝒫 𝐵 = 𝐵
65eqcomi 2197 . . . . . 6 𝐵 = 𝒫 𝐵
74, 6txuni 14431 . . . . 5 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐵 ∈ Top) → (𝐴 × 𝐵) = (𝒫 𝐴 ×t 𝒫 𝐵))
81, 2, 7syl2an 289 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) = (𝒫 𝐴 ×t 𝒫 𝐵))
9 eqimss2 3234 . . . 4 ((𝐴 × 𝐵) = (𝒫 𝐴 ×t 𝒫 𝐵) → (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ (𝐴 × 𝐵))
108, 9syl 14 . . 3 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ (𝐴 × 𝐵))
11 sspwuni 3997 . . 3 ((𝒫 𝐴 ×t 𝒫 𝐵) ⊆ 𝒫 (𝐴 × 𝐵) ↔ (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ (𝐴 × 𝐵))
1210, 11sylibr 134 . 2 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ 𝒫 (𝐴 × 𝐵))
13 elelpwi 3613 . . . . . . . . 9 ((𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵)) → 𝑦 ∈ (𝐴 × 𝐵))
1413adantl 277 . . . . . . . 8 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 ∈ (𝐴 × 𝐵))
15 xp1st 6218 . . . . . . . 8 (𝑦 ∈ (𝐴 × 𝐵) → (1st𝑦) ∈ 𝐴)
16 snelpwi 4241 . . . . . . . 8 ((1st𝑦) ∈ 𝐴 → {(1st𝑦)} ∈ 𝒫 𝐴)
1714, 15, 163syl 17 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {(1st𝑦)} ∈ 𝒫 𝐴)
18 xp2nd 6219 . . . . . . . 8 (𝑦 ∈ (𝐴 × 𝐵) → (2nd𝑦) ∈ 𝐵)
19 snelpwi 4241 . . . . . . . 8 ((2nd𝑦) ∈ 𝐵 → {(2nd𝑦)} ∈ 𝒫 𝐵)
2014, 18, 193syl 17 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {(2nd𝑦)} ∈ 𝒫 𝐵)
21 vsnid 3650 . . . . . . . 8 𝑦 ∈ {𝑦}
22 1st2nd2 6228 . . . . . . . . . 10 (𝑦 ∈ (𝐴 × 𝐵) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
2314, 22syl 14 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
2423sneqd 3631 . . . . . . . 8 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {𝑦} = {⟨(1st𝑦), (2nd𝑦)⟩})
2521, 24eleqtrid 2282 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 ∈ {⟨(1st𝑦), (2nd𝑦)⟩})
26 simprl 529 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦𝑥)
2723, 26eqeltrrd 2271 . . . . . . . 8 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑥)
2827snssd 3763 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {⟨(1st𝑦), (2nd𝑦)⟩} ⊆ 𝑥)
29 xpeq1 4673 . . . . . . . . . 10 (𝑧 = {(1st𝑦)} → (𝑧 × 𝑤) = ({(1st𝑦)} × 𝑤))
3029eleq2d 2263 . . . . . . . . 9 (𝑧 = {(1st𝑦)} → (𝑦 ∈ (𝑧 × 𝑤) ↔ 𝑦 ∈ ({(1st𝑦)} × 𝑤)))
3129sseq1d 3208 . . . . . . . . 9 (𝑧 = {(1st𝑦)} → ((𝑧 × 𝑤) ⊆ 𝑥 ↔ ({(1st𝑦)} × 𝑤) ⊆ 𝑥))
3230, 31anbi12d 473 . . . . . . . 8 (𝑧 = {(1st𝑦)} → ((𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥) ↔ (𝑦 ∈ ({(1st𝑦)} × 𝑤) ∧ ({(1st𝑦)} × 𝑤) ⊆ 𝑥)))
33 xpeq2 4674 . . . . . . . . . . 11 (𝑤 = {(2nd𝑦)} → ({(1st𝑦)} × 𝑤) = ({(1st𝑦)} × {(2nd𝑦)}))
34 1stexg 6220 . . . . . . . . . . . . 13 (𝑦 ∈ V → (1st𝑦) ∈ V)
3534elv 2764 . . . . . . . . . . . 12 (1st𝑦) ∈ V
36 2ndexg 6221 . . . . . . . . . . . . 13 (𝑦 ∈ V → (2nd𝑦) ∈ V)
3736elv 2764 . . . . . . . . . . . 12 (2nd𝑦) ∈ V
3835, 37xpsn 5734 . . . . . . . . . . 11 ({(1st𝑦)} × {(2nd𝑦)}) = {⟨(1st𝑦), (2nd𝑦)⟩}
3933, 38eqtrdi 2242 . . . . . . . . . 10 (𝑤 = {(2nd𝑦)} → ({(1st𝑦)} × 𝑤) = {⟨(1st𝑦), (2nd𝑦)⟩})
4039eleq2d 2263 . . . . . . . . 9 (𝑤 = {(2nd𝑦)} → (𝑦 ∈ ({(1st𝑦)} × 𝑤) ↔ 𝑦 ∈ {⟨(1st𝑦), (2nd𝑦)⟩}))
4139sseq1d 3208 . . . . . . . . 9 (𝑤 = {(2nd𝑦)} → (({(1st𝑦)} × 𝑤) ⊆ 𝑥 ↔ {⟨(1st𝑦), (2nd𝑦)⟩} ⊆ 𝑥))
4240, 41anbi12d 473 . . . . . . . 8 (𝑤 = {(2nd𝑦)} → ((𝑦 ∈ ({(1st𝑦)} × 𝑤) ∧ ({(1st𝑦)} × 𝑤) ⊆ 𝑥) ↔ (𝑦 ∈ {⟨(1st𝑦), (2nd𝑦)⟩} ∧ {⟨(1st𝑦), (2nd𝑦)⟩} ⊆ 𝑥)))
4332, 42rspc2ev 2879 . . . . . . 7 (({(1st𝑦)} ∈ 𝒫 𝐴 ∧ {(2nd𝑦)} ∈ 𝒫 𝐵 ∧ (𝑦 ∈ {⟨(1st𝑦), (2nd𝑦)⟩} ∧ {⟨(1st𝑦), (2nd𝑦)⟩} ⊆ 𝑥)) → ∃𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))
4417, 20, 25, 28, 43syl112anc 1253 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → ∃𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))
4544expr 375 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ 𝑦𝑥) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) → ∃𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
4645ralrimdva 2574 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) → ∀𝑦𝑥𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
47 eltx 14427 . . . . 5 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐵 ∈ Top) → (𝑥 ∈ (𝒫 𝐴 ×t 𝒫 𝐵) ↔ ∀𝑦𝑥𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
481, 2, 47syl2an 289 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ (𝒫 𝐴 ×t 𝒫 𝐵) ↔ ∀𝑦𝑥𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
4946, 48sylibrd 169 . . 3 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) → 𝑥 ∈ (𝒫 𝐴 ×t 𝒫 𝐵)))
5049ssrdv 3185 . 2 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ⊆ (𝒫 𝐴 ×t 𝒫 𝐵))
5112, 50eqssd 3196 1 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) = 𝒫 (𝐴 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  wrex 2473  Vcvv 2760  wss 3153  𝒫 cpw 3601  {csn 3618  cop 3621   cuni 3835   × cxp 4657  cfv 5254  (class class class)co 5918  1st c1st 6191  2nd c2nd 6192  Topctop 14165   ×t ctx 14420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-topgen 12871  df-top 14166  df-topon 14179  df-bases 14211  df-tx 14421
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator