ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txdis GIF version

Theorem txdis 14864
Description: The topological product of discrete spaces is discrete. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
txdis ((𝐴𝑉𝐵𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) = 𝒫 (𝐴 × 𝐵))

Proof of Theorem txdis
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 14672 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ Top)
2 distop 14672 . . . . 5 (𝐵𝑊 → 𝒫 𝐵 ∈ Top)
3 unipw 4279 . . . . . . 7 𝒫 𝐴 = 𝐴
43eqcomi 2211 . . . . . 6 𝐴 = 𝒫 𝐴
5 unipw 4279 . . . . . . 7 𝒫 𝐵 = 𝐵
65eqcomi 2211 . . . . . 6 𝐵 = 𝒫 𝐵
74, 6txuni 14850 . . . . 5 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐵 ∈ Top) → (𝐴 × 𝐵) = (𝒫 𝐴 ×t 𝒫 𝐵))
81, 2, 7syl2an 289 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝐴 × 𝐵) = (𝒫 𝐴 ×t 𝒫 𝐵))
9 eqimss2 3256 . . . 4 ((𝐴 × 𝐵) = (𝒫 𝐴 ×t 𝒫 𝐵) → (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ (𝐴 × 𝐵))
108, 9syl 14 . . 3 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ (𝐴 × 𝐵))
11 sspwuni 4026 . . 3 ((𝒫 𝐴 ×t 𝒫 𝐵) ⊆ 𝒫 (𝐴 × 𝐵) ↔ (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ (𝐴 × 𝐵))
1210, 11sylibr 134 . 2 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ 𝒫 (𝐴 × 𝐵))
13 elelpwi 3638 . . . . . . . . 9 ((𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵)) → 𝑦 ∈ (𝐴 × 𝐵))
1413adantl 277 . . . . . . . 8 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 ∈ (𝐴 × 𝐵))
15 xp1st 6274 . . . . . . . 8 (𝑦 ∈ (𝐴 × 𝐵) → (1st𝑦) ∈ 𝐴)
16 snelpwi 4273 . . . . . . . 8 ((1st𝑦) ∈ 𝐴 → {(1st𝑦)} ∈ 𝒫 𝐴)
1714, 15, 163syl 17 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {(1st𝑦)} ∈ 𝒫 𝐴)
18 xp2nd 6275 . . . . . . . 8 (𝑦 ∈ (𝐴 × 𝐵) → (2nd𝑦) ∈ 𝐵)
19 snelpwi 4273 . . . . . . . 8 ((2nd𝑦) ∈ 𝐵 → {(2nd𝑦)} ∈ 𝒫 𝐵)
2014, 18, 193syl 17 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {(2nd𝑦)} ∈ 𝒫 𝐵)
21 vsnid 3675 . . . . . . . 8 𝑦 ∈ {𝑦}
22 1st2nd2 6284 . . . . . . . . . 10 (𝑦 ∈ (𝐴 × 𝐵) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
2314, 22syl 14 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
2423sneqd 3656 . . . . . . . 8 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {𝑦} = {⟨(1st𝑦), (2nd𝑦)⟩})
2521, 24eleqtrid 2296 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 ∈ {⟨(1st𝑦), (2nd𝑦)⟩})
26 simprl 529 . . . . . . . . 9 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦𝑥)
2723, 26eqeltrrd 2285 . . . . . . . 8 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑥)
2827snssd 3789 . . . . . . 7 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {⟨(1st𝑦), (2nd𝑦)⟩} ⊆ 𝑥)
29 xpeq1 4707 . . . . . . . . . 10 (𝑧 = {(1st𝑦)} → (𝑧 × 𝑤) = ({(1st𝑦)} × 𝑤))
3029eleq2d 2277 . . . . . . . . 9 (𝑧 = {(1st𝑦)} → (𝑦 ∈ (𝑧 × 𝑤) ↔ 𝑦 ∈ ({(1st𝑦)} × 𝑤)))
3129sseq1d 3230 . . . . . . . . 9 (𝑧 = {(1st𝑦)} → ((𝑧 × 𝑤) ⊆ 𝑥 ↔ ({(1st𝑦)} × 𝑤) ⊆ 𝑥))
3230, 31anbi12d 473 . . . . . . . 8 (𝑧 = {(1st𝑦)} → ((𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥) ↔ (𝑦 ∈ ({(1st𝑦)} × 𝑤) ∧ ({(1st𝑦)} × 𝑤) ⊆ 𝑥)))
33 xpeq2 4708 . . . . . . . . . . 11 (𝑤 = {(2nd𝑦)} → ({(1st𝑦)} × 𝑤) = ({(1st𝑦)} × {(2nd𝑦)}))
34 1stexg 6276 . . . . . . . . . . . . 13 (𝑦 ∈ V → (1st𝑦) ∈ V)
3534elv 2780 . . . . . . . . . . . 12 (1st𝑦) ∈ V
36 2ndexg 6277 . . . . . . . . . . . . 13 (𝑦 ∈ V → (2nd𝑦) ∈ V)
3736elv 2780 . . . . . . . . . . . 12 (2nd𝑦) ∈ V
3835, 37xpsn 5779 . . . . . . . . . . 11 ({(1st𝑦)} × {(2nd𝑦)}) = {⟨(1st𝑦), (2nd𝑦)⟩}
3933, 38eqtrdi 2256 . . . . . . . . . 10 (𝑤 = {(2nd𝑦)} → ({(1st𝑦)} × 𝑤) = {⟨(1st𝑦), (2nd𝑦)⟩})
4039eleq2d 2277 . . . . . . . . 9 (𝑤 = {(2nd𝑦)} → (𝑦 ∈ ({(1st𝑦)} × 𝑤) ↔ 𝑦 ∈ {⟨(1st𝑦), (2nd𝑦)⟩}))
4139sseq1d 3230 . . . . . . . . 9 (𝑤 = {(2nd𝑦)} → (({(1st𝑦)} × 𝑤) ⊆ 𝑥 ↔ {⟨(1st𝑦), (2nd𝑦)⟩} ⊆ 𝑥))
4240, 41anbi12d 473 . . . . . . . 8 (𝑤 = {(2nd𝑦)} → ((𝑦 ∈ ({(1st𝑦)} × 𝑤) ∧ ({(1st𝑦)} × 𝑤) ⊆ 𝑥) ↔ (𝑦 ∈ {⟨(1st𝑦), (2nd𝑦)⟩} ∧ {⟨(1st𝑦), (2nd𝑦)⟩} ⊆ 𝑥)))
4332, 42rspc2ev 2899 . . . . . . 7 (({(1st𝑦)} ∈ 𝒫 𝐴 ∧ {(2nd𝑦)} ∈ 𝒫 𝐵 ∧ (𝑦 ∈ {⟨(1st𝑦), (2nd𝑦)⟩} ∧ {⟨(1st𝑦), (2nd𝑦)⟩} ⊆ 𝑥)) → ∃𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))
4417, 20, 25, 28, 43syl112anc 1254 . . . . . 6 (((𝐴𝑉𝐵𝑊) ∧ (𝑦𝑥𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → ∃𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))
4544expr 375 . . . . 5 (((𝐴𝑉𝐵𝑊) ∧ 𝑦𝑥) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) → ∃𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
4645ralrimdva 2588 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) → ∀𝑦𝑥𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
47 eltx 14846 . . . . 5 ((𝒫 𝐴 ∈ Top ∧ 𝒫 𝐵 ∈ Top) → (𝑥 ∈ (𝒫 𝐴 ×t 𝒫 𝐵) ↔ ∀𝑦𝑥𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
481, 2, 47syl2an 289 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ (𝒫 𝐴 ×t 𝒫 𝐵) ↔ ∀𝑦𝑥𝑧 ∈ 𝒫 𝐴𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)))
4946, 48sylibrd 169 . . 3 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) → 𝑥 ∈ (𝒫 𝐴 ×t 𝒫 𝐵)))
5049ssrdv 3207 . 2 ((𝐴𝑉𝐵𝑊) → 𝒫 (𝐴 × 𝐵) ⊆ (𝒫 𝐴 ×t 𝒫 𝐵))
5112, 50eqssd 3218 1 ((𝐴𝑉𝐵𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) = 𝒫 (𝐴 × 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  wral 2486  wrex 2487  Vcvv 2776  wss 3174  𝒫 cpw 3626  {csn 3643  cop 3646   cuni 3864   × cxp 4691  cfv 5290  (class class class)co 5967  1st c1st 6247  2nd c2nd 6248  Topctop 14584   ×t ctx 14839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-topgen 13207  df-top 14585  df-topon 14598  df-bases 14630  df-tx 14840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator