| Step | Hyp | Ref
| Expression |
| 1 | | distop 14405 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ Top) |
| 2 | | distop 14405 |
. . . . 5
⊢ (𝐵 ∈ 𝑊 → 𝒫 𝐵 ∈ Top) |
| 3 | | unipw 4251 |
. . . . . . 7
⊢ ∪ 𝒫 𝐴 = 𝐴 |
| 4 | 3 | eqcomi 2200 |
. . . . . 6
⊢ 𝐴 = ∪
𝒫 𝐴 |
| 5 | | unipw 4251 |
. . . . . . 7
⊢ ∪ 𝒫 𝐵 = 𝐵 |
| 6 | 5 | eqcomi 2200 |
. . . . . 6
⊢ 𝐵 = ∪
𝒫 𝐵 |
| 7 | 4, 6 | txuni 14583 |
. . . . 5
⊢
((𝒫 𝐴 ∈
Top ∧ 𝒫 𝐵
∈ Top) → (𝐴
× 𝐵) = ∪ (𝒫 𝐴 ×t 𝒫 𝐵)) |
| 8 | 1, 2, 7 | syl2an 289 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) = ∪ (𝒫
𝐴 ×t
𝒫 𝐵)) |
| 9 | | eqimss2 3239 |
. . . 4
⊢ ((𝐴 × 𝐵) = ∪ (𝒫
𝐴 ×t
𝒫 𝐵) → ∪ (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ (𝐴 × 𝐵)) |
| 10 | 8, 9 | syl 14 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∪
(𝒫 𝐴
×t 𝒫 𝐵) ⊆ (𝐴 × 𝐵)) |
| 11 | | sspwuni 4002 |
. . 3
⊢
((𝒫 𝐴
×t 𝒫 𝐵) ⊆ 𝒫 (𝐴 × 𝐵) ↔ ∪
(𝒫 𝐴
×t 𝒫 𝐵) ⊆ (𝐴 × 𝐵)) |
| 12 | 10, 11 | sylibr 134 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) ⊆ 𝒫 (𝐴 × 𝐵)) |
| 13 | | elelpwi 3618 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵)) → 𝑦 ∈ (𝐴 × 𝐵)) |
| 14 | 13 | adantl 277 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 ∈ (𝐴 × 𝐵)) |
| 15 | | xp1st 6232 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝐴 × 𝐵) → (1st ‘𝑦) ∈ 𝐴) |
| 16 | | snelpwi 4246 |
. . . . . . . 8
⊢
((1st ‘𝑦) ∈ 𝐴 → {(1st ‘𝑦)} ∈ 𝒫 𝐴) |
| 17 | 14, 15, 16 | 3syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {(1st ‘𝑦)} ∈ 𝒫 𝐴) |
| 18 | | xp2nd 6233 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝐴 × 𝐵) → (2nd ‘𝑦) ∈ 𝐵) |
| 19 | | snelpwi 4246 |
. . . . . . . 8
⊢
((2nd ‘𝑦) ∈ 𝐵 → {(2nd ‘𝑦)} ∈ 𝒫 𝐵) |
| 20 | 14, 18, 19 | 3syl 17 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {(2nd ‘𝑦)} ∈ 𝒫 𝐵) |
| 21 | | vsnid 3655 |
. . . . . . . 8
⊢ 𝑦 ∈ {𝑦} |
| 22 | | 1st2nd2 6242 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (𝐴 × 𝐵) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) |
| 23 | 14, 22 | syl 14 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) |
| 24 | 23 | sneqd 3636 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {𝑦} = {〈(1st ‘𝑦), (2nd ‘𝑦)〉}) |
| 25 | 21, 24 | eleqtrid 2285 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 ∈ {〈(1st ‘𝑦), (2nd ‘𝑦)〉}) |
| 26 | | simprl 529 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 𝑦 ∈ 𝑥) |
| 27 | 23, 26 | eqeltrrd 2274 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → 〈(1st
‘𝑦), (2nd
‘𝑦)〉 ∈
𝑥) |
| 28 | 27 | snssd 3768 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → {〈(1st
‘𝑦), (2nd
‘𝑦)〉} ⊆
𝑥) |
| 29 | | xpeq1 4678 |
. . . . . . . . . 10
⊢ (𝑧 = {(1st ‘𝑦)} → (𝑧 × 𝑤) = ({(1st ‘𝑦)} × 𝑤)) |
| 30 | 29 | eleq2d 2266 |
. . . . . . . . 9
⊢ (𝑧 = {(1st ‘𝑦)} → (𝑦 ∈ (𝑧 × 𝑤) ↔ 𝑦 ∈ ({(1st ‘𝑦)} × 𝑤))) |
| 31 | 29 | sseq1d 3213 |
. . . . . . . . 9
⊢ (𝑧 = {(1st ‘𝑦)} → ((𝑧 × 𝑤) ⊆ 𝑥 ↔ ({(1st ‘𝑦)} × 𝑤) ⊆ 𝑥)) |
| 32 | 30, 31 | anbi12d 473 |
. . . . . . . 8
⊢ (𝑧 = {(1st ‘𝑦)} → ((𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥) ↔ (𝑦 ∈ ({(1st ‘𝑦)} × 𝑤) ∧ ({(1st ‘𝑦)} × 𝑤) ⊆ 𝑥))) |
| 33 | | xpeq2 4679 |
. . . . . . . . . . 11
⊢ (𝑤 = {(2nd ‘𝑦)} → ({(1st
‘𝑦)} × 𝑤) = ({(1st
‘𝑦)} ×
{(2nd ‘𝑦)})) |
| 34 | | 1stexg 6234 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ V → (1st
‘𝑦) ∈
V) |
| 35 | 34 | elv 2767 |
. . . . . . . . . . . 12
⊢
(1st ‘𝑦) ∈ V |
| 36 | | 2ndexg 6235 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ V → (2nd
‘𝑦) ∈
V) |
| 37 | 36 | elv 2767 |
. . . . . . . . . . . 12
⊢
(2nd ‘𝑦) ∈ V |
| 38 | 35, 37 | xpsn 5741 |
. . . . . . . . . . 11
⊢
({(1st ‘𝑦)} × {(2nd ‘𝑦)}) = {〈(1st
‘𝑦), (2nd
‘𝑦)〉} |
| 39 | 33, 38 | eqtrdi 2245 |
. . . . . . . . . 10
⊢ (𝑤 = {(2nd ‘𝑦)} → ({(1st
‘𝑦)} × 𝑤) = {〈(1st
‘𝑦), (2nd
‘𝑦)〉}) |
| 40 | 39 | eleq2d 2266 |
. . . . . . . . 9
⊢ (𝑤 = {(2nd ‘𝑦)} → (𝑦 ∈ ({(1st ‘𝑦)} × 𝑤) ↔ 𝑦 ∈ {〈(1st ‘𝑦), (2nd ‘𝑦)〉})) |
| 41 | 39 | sseq1d 3213 |
. . . . . . . . 9
⊢ (𝑤 = {(2nd ‘𝑦)} → (({(1st
‘𝑦)} × 𝑤) ⊆ 𝑥 ↔ {〈(1st ‘𝑦), (2nd ‘𝑦)〉} ⊆ 𝑥)) |
| 42 | 40, 41 | anbi12d 473 |
. . . . . . . 8
⊢ (𝑤 = {(2nd ‘𝑦)} → ((𝑦 ∈ ({(1st ‘𝑦)} × 𝑤) ∧ ({(1st ‘𝑦)} × 𝑤) ⊆ 𝑥) ↔ (𝑦 ∈ {〈(1st ‘𝑦), (2nd ‘𝑦)〉} ∧
{〈(1st ‘𝑦), (2nd ‘𝑦)〉} ⊆ 𝑥))) |
| 43 | 32, 42 | rspc2ev 2883 |
. . . . . . 7
⊢
(({(1st ‘𝑦)} ∈ 𝒫 𝐴 ∧ {(2nd ‘𝑦)} ∈ 𝒫 𝐵 ∧ (𝑦 ∈ {〈(1st ‘𝑦), (2nd ‘𝑦)〉} ∧
{〈(1st ‘𝑦), (2nd ‘𝑦)〉} ⊆ 𝑥)) → ∃𝑧 ∈ 𝒫 𝐴∃𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) |
| 44 | 17, 20, 25, 28, 43 | syl112anc 1253 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝒫 (𝐴 × 𝐵))) → ∃𝑧 ∈ 𝒫 𝐴∃𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥)) |
| 45 | 44 | expr 375 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝑦 ∈ 𝑥) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) → ∃𝑧 ∈ 𝒫 𝐴∃𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))) |
| 46 | 45 | ralrimdva 2577 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) → ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝒫 𝐴∃𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))) |
| 47 | | eltx 14579 |
. . . . 5
⊢
((𝒫 𝐴 ∈
Top ∧ 𝒫 𝐵
∈ Top) → (𝑥
∈ (𝒫 𝐴
×t 𝒫 𝐵) ↔ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝒫 𝐴∃𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))) |
| 48 | 1, 2, 47 | syl2an 289 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ (𝒫 𝐴 ×t 𝒫 𝐵) ↔ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝒫 𝐴∃𝑤 ∈ 𝒫 𝐵(𝑦 ∈ (𝑧 × 𝑤) ∧ (𝑧 × 𝑤) ⊆ 𝑥))) |
| 49 | 46, 48 | sylibrd 169 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ 𝒫 (𝐴 × 𝐵) → 𝑥 ∈ (𝒫 𝐴 ×t 𝒫 𝐵))) |
| 50 | 49 | ssrdv 3190 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝒫 (𝐴 × 𝐵) ⊆ (𝒫 𝐴 ×t 𝒫 𝐵)) |
| 51 | 12, 50 | eqssd 3201 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) = 𝒫 (𝐴 × 𝐵)) |