Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nnelirr GIF version

Theorem bj-nnelirr 15851
Description: A natural number does not belong to itself. Version of elirr 4588 for natural numbers, which does not require ax-setind 4584. (Contributed by BJ, 24-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nnelirr (𝐴 ∈ ω → ¬ 𝐴𝐴)

Proof of Theorem bj-nnelirr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3463 . 2 ¬ ∅ ∈ ∅
2 df-suc 4417 . . . . . 6 suc 𝑦 = (𝑦 ∪ {𝑦})
32eleq2i 2271 . . . . 5 (suc 𝑦 ∈ suc 𝑦 ↔ suc 𝑦 ∈ (𝑦 ∪ {𝑦}))
4 elun 3313 . . . . . 6 (suc 𝑦 ∈ (𝑦 ∪ {𝑦}) ↔ (suc 𝑦𝑦 ∨ suc 𝑦 ∈ {𝑦}))
5 bj-nntrans 15849 . . . . . . . 8 (𝑦 ∈ ω → (suc 𝑦𝑦 → suc 𝑦𝑦))
6 sucssel 4470 . . . . . . . 8 (𝑦 ∈ ω → (suc 𝑦𝑦𝑦𝑦))
75, 6syld 45 . . . . . . 7 (𝑦 ∈ ω → (suc 𝑦𝑦𝑦𝑦))
8 vex 2774 . . . . . . . . . 10 𝑦 ∈ V
98sucid 4463 . . . . . . . . 9 𝑦 ∈ suc 𝑦
10 elsni 3650 . . . . . . . . 9 (suc 𝑦 ∈ {𝑦} → suc 𝑦 = 𝑦)
119, 10eleqtrid 2293 . . . . . . . 8 (suc 𝑦 ∈ {𝑦} → 𝑦𝑦)
1211a1i 9 . . . . . . 7 (𝑦 ∈ ω → (suc 𝑦 ∈ {𝑦} → 𝑦𝑦))
137, 12jaod 718 . . . . . 6 (𝑦 ∈ ω → ((suc 𝑦𝑦 ∨ suc 𝑦 ∈ {𝑦}) → 𝑦𝑦))
144, 13biimtrid 152 . . . . 5 (𝑦 ∈ ω → (suc 𝑦 ∈ (𝑦 ∪ {𝑦}) → 𝑦𝑦))
153, 14biimtrid 152 . . . 4 (𝑦 ∈ ω → (suc 𝑦 ∈ suc 𝑦𝑦𝑦))
1615con3d 632 . . 3 (𝑦 ∈ ω → (¬ 𝑦𝑦 → ¬ suc 𝑦 ∈ suc 𝑦))
1716rgen 2558 . 2 𝑦 ∈ ω (¬ 𝑦𝑦 → ¬ suc 𝑦 ∈ suc 𝑦)
18 ax-bdel 15719 . . . 4 BOUNDED 𝑥𝑥
1918ax-bdn 15715 . . 3 BOUNDED ¬ 𝑥𝑥
20 nfv 1550 . . 3 𝑥 ¬ ∅ ∈ ∅
21 nfv 1550 . . 3 𝑥 ¬ 𝑦𝑦
22 nfv 1550 . . 3 𝑥 ¬ suc 𝑦 ∈ suc 𝑦
23 eleq1 2267 . . . . . 6 (𝑥 = ∅ → (𝑥𝑥 ↔ ∅ ∈ 𝑥))
24 eleq2 2268 . . . . . 6 (𝑥 = ∅ → (∅ ∈ 𝑥 ↔ ∅ ∈ ∅))
2523, 24bitrd 188 . . . . 5 (𝑥 = ∅ → (𝑥𝑥 ↔ ∅ ∈ ∅))
2625notbid 668 . . . 4 (𝑥 = ∅ → (¬ 𝑥𝑥 ↔ ¬ ∅ ∈ ∅))
2726biimprd 158 . . 3 (𝑥 = ∅ → (¬ ∅ ∈ ∅ → ¬ 𝑥𝑥))
28 elequ1 2179 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑥))
29 elequ2 2180 . . . . . 6 (𝑥 = 𝑦 → (𝑦𝑥𝑦𝑦))
3028, 29bitrd 188 . . . . 5 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑦))
3130notbid 668 . . . 4 (𝑥 = 𝑦 → (¬ 𝑥𝑥 ↔ ¬ 𝑦𝑦))
3231biimpd 144 . . 3 (𝑥 = 𝑦 → (¬ 𝑥𝑥 → ¬ 𝑦𝑦))
33 eleq1 2267 . . . . . 6 (𝑥 = suc 𝑦 → (𝑥𝑥 ↔ suc 𝑦𝑥))
34 eleq2 2268 . . . . . 6 (𝑥 = suc 𝑦 → (suc 𝑦𝑥 ↔ suc 𝑦 ∈ suc 𝑦))
3533, 34bitrd 188 . . . . 5 (𝑥 = suc 𝑦 → (𝑥𝑥 ↔ suc 𝑦 ∈ suc 𝑦))
3635notbid 668 . . . 4 (𝑥 = suc 𝑦 → (¬ 𝑥𝑥 ↔ ¬ suc 𝑦 ∈ suc 𝑦))
3736biimprd 158 . . 3 (𝑥 = suc 𝑦 → (¬ suc 𝑦 ∈ suc 𝑦 → ¬ 𝑥𝑥))
38 nfcv 2347 . . 3 𝑥𝐴
39 nfv 1550 . . 3 𝑥 ¬ 𝐴𝐴
40 eleq1 2267 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑥𝐴𝑥))
41 eleq2 2268 . . . . . 6 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
4240, 41bitrd 188 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑥𝐴𝐴))
4342notbid 668 . . . 4 (𝑥 = 𝐴 → (¬ 𝑥𝑥 ↔ ¬ 𝐴𝐴))
4443biimpd 144 . . 3 (𝑥 = 𝐴 → (¬ 𝑥𝑥 → ¬ 𝐴𝐴))
4519, 20, 21, 22, 27, 32, 37, 38, 39, 44bj-bdfindisg 15846 . 2 ((¬ ∅ ∈ ∅ ∧ ∀𝑦 ∈ ω (¬ 𝑦𝑦 → ¬ suc 𝑦 ∈ suc 𝑦)) → (𝐴 ∈ ω → ¬ 𝐴𝐴))
461, 17, 45mp2an 426 1 (𝐴 ∈ ω → ¬ 𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 709   = wceq 1372  wcel 2175  wral 2483  cun 3163  wss 3165  c0 3459  {csn 3632  suc csuc 4411  ωcom 4637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-nul 4169  ax-pr 4252  ax-un 4479  ax-bd0 15711  ax-bdor 15714  ax-bdn 15715  ax-bdal 15716  ax-bdex 15717  ax-bdeq 15718  ax-bdel 15719  ax-bdsb 15720  ax-bdsep 15782  ax-infvn 15839
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-sn 3638  df-pr 3639  df-uni 3850  df-int 3885  df-suc 4417  df-iom 4638  df-bdc 15739  df-bj-ind 15825
This theorem is referenced by:  bj-nnen2lp  15852
  Copyright terms: Public domain W3C validator