Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nnelirr GIF version

Theorem bj-nnelirr 14675
Description: A natural number does not belong to itself. Version of elirr 4540 for natural numbers, which does not require ax-setind 4536. (Contributed by BJ, 24-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nnelirr (𝐴 ∈ ω → ¬ 𝐴𝐴)

Proof of Theorem bj-nnelirr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3426 . 2 ¬ ∅ ∈ ∅
2 df-suc 4371 . . . . . 6 suc 𝑦 = (𝑦 ∪ {𝑦})
32eleq2i 2244 . . . . 5 (suc 𝑦 ∈ suc 𝑦 ↔ suc 𝑦 ∈ (𝑦 ∪ {𝑦}))
4 elun 3276 . . . . . 6 (suc 𝑦 ∈ (𝑦 ∪ {𝑦}) ↔ (suc 𝑦𝑦 ∨ suc 𝑦 ∈ {𝑦}))
5 bj-nntrans 14673 . . . . . . . 8 (𝑦 ∈ ω → (suc 𝑦𝑦 → suc 𝑦𝑦))
6 sucssel 4424 . . . . . . . 8 (𝑦 ∈ ω → (suc 𝑦𝑦𝑦𝑦))
75, 6syld 45 . . . . . . 7 (𝑦 ∈ ω → (suc 𝑦𝑦𝑦𝑦))
8 vex 2740 . . . . . . . . . 10 𝑦 ∈ V
98sucid 4417 . . . . . . . . 9 𝑦 ∈ suc 𝑦
10 elsni 3610 . . . . . . . . 9 (suc 𝑦 ∈ {𝑦} → suc 𝑦 = 𝑦)
119, 10eleqtrid 2266 . . . . . . . 8 (suc 𝑦 ∈ {𝑦} → 𝑦𝑦)
1211a1i 9 . . . . . . 7 (𝑦 ∈ ω → (suc 𝑦 ∈ {𝑦} → 𝑦𝑦))
137, 12jaod 717 . . . . . 6 (𝑦 ∈ ω → ((suc 𝑦𝑦 ∨ suc 𝑦 ∈ {𝑦}) → 𝑦𝑦))
144, 13biimtrid 152 . . . . 5 (𝑦 ∈ ω → (suc 𝑦 ∈ (𝑦 ∪ {𝑦}) → 𝑦𝑦))
153, 14biimtrid 152 . . . 4 (𝑦 ∈ ω → (suc 𝑦 ∈ suc 𝑦𝑦𝑦))
1615con3d 631 . . 3 (𝑦 ∈ ω → (¬ 𝑦𝑦 → ¬ suc 𝑦 ∈ suc 𝑦))
1716rgen 2530 . 2 𝑦 ∈ ω (¬ 𝑦𝑦 → ¬ suc 𝑦 ∈ suc 𝑦)
18 ax-bdel 14543 . . . 4 BOUNDED 𝑥𝑥
1918ax-bdn 14539 . . 3 BOUNDED ¬ 𝑥𝑥
20 nfv 1528 . . 3 𝑥 ¬ ∅ ∈ ∅
21 nfv 1528 . . 3 𝑥 ¬ 𝑦𝑦
22 nfv 1528 . . 3 𝑥 ¬ suc 𝑦 ∈ suc 𝑦
23 eleq1 2240 . . . . . 6 (𝑥 = ∅ → (𝑥𝑥 ↔ ∅ ∈ 𝑥))
24 eleq2 2241 . . . . . 6 (𝑥 = ∅ → (∅ ∈ 𝑥 ↔ ∅ ∈ ∅))
2523, 24bitrd 188 . . . . 5 (𝑥 = ∅ → (𝑥𝑥 ↔ ∅ ∈ ∅))
2625notbid 667 . . . 4 (𝑥 = ∅ → (¬ 𝑥𝑥 ↔ ¬ ∅ ∈ ∅))
2726biimprd 158 . . 3 (𝑥 = ∅ → (¬ ∅ ∈ ∅ → ¬ 𝑥𝑥))
28 elequ1 2152 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑥))
29 elequ2 2153 . . . . . 6 (𝑥 = 𝑦 → (𝑦𝑥𝑦𝑦))
3028, 29bitrd 188 . . . . 5 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑦))
3130notbid 667 . . . 4 (𝑥 = 𝑦 → (¬ 𝑥𝑥 ↔ ¬ 𝑦𝑦))
3231biimpd 144 . . 3 (𝑥 = 𝑦 → (¬ 𝑥𝑥 → ¬ 𝑦𝑦))
33 eleq1 2240 . . . . . 6 (𝑥 = suc 𝑦 → (𝑥𝑥 ↔ suc 𝑦𝑥))
34 eleq2 2241 . . . . . 6 (𝑥 = suc 𝑦 → (suc 𝑦𝑥 ↔ suc 𝑦 ∈ suc 𝑦))
3533, 34bitrd 188 . . . . 5 (𝑥 = suc 𝑦 → (𝑥𝑥 ↔ suc 𝑦 ∈ suc 𝑦))
3635notbid 667 . . . 4 (𝑥 = suc 𝑦 → (¬ 𝑥𝑥 ↔ ¬ suc 𝑦 ∈ suc 𝑦))
3736biimprd 158 . . 3 (𝑥 = suc 𝑦 → (¬ suc 𝑦 ∈ suc 𝑦 → ¬ 𝑥𝑥))
38 nfcv 2319 . . 3 𝑥𝐴
39 nfv 1528 . . 3 𝑥 ¬ 𝐴𝐴
40 eleq1 2240 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑥𝐴𝑥))
41 eleq2 2241 . . . . . 6 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
4240, 41bitrd 188 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑥𝐴𝐴))
4342notbid 667 . . . 4 (𝑥 = 𝐴 → (¬ 𝑥𝑥 ↔ ¬ 𝐴𝐴))
4443biimpd 144 . . 3 (𝑥 = 𝐴 → (¬ 𝑥𝑥 → ¬ 𝐴𝐴))
4519, 20, 21, 22, 27, 32, 37, 38, 39, 44bj-bdfindisg 14670 . 2 ((¬ ∅ ∈ ∅ ∧ ∀𝑦 ∈ ω (¬ 𝑦𝑦 → ¬ suc 𝑦 ∈ suc 𝑦)) → (𝐴 ∈ ω → ¬ 𝐴𝐴))
461, 17, 45mp2an 426 1 (𝐴 ∈ ω → ¬ 𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 708   = wceq 1353  wcel 2148  wral 2455  cun 3127  wss 3129  c0 3422  {csn 3592  suc csuc 4365  ωcom 4589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-nul 4129  ax-pr 4209  ax-un 4433  ax-bd0 14535  ax-bdor 14538  ax-bdn 14539  ax-bdal 14540  ax-bdex 14541  ax-bdeq 14542  ax-bdel 14543  ax-bdsb 14544  ax-bdsep 14606  ax-infvn 14663
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-sn 3598  df-pr 3599  df-uni 3810  df-int 3845  df-suc 4371  df-iom 4590  df-bdc 14563  df-bj-ind 14649
This theorem is referenced by:  bj-nnen2lp  14676
  Copyright terms: Public domain W3C validator