Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-nnelirr GIF version

Theorem bj-nnelirr 13988
Description: A natural number does not belong to itself. Version of elirr 4525 for natural numbers, which does not require ax-setind 4521. (Contributed by BJ, 24-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-nnelirr (𝐴 ∈ ω → ¬ 𝐴𝐴)

Proof of Theorem bj-nnelirr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3418 . 2 ¬ ∅ ∈ ∅
2 df-suc 4356 . . . . . 6 suc 𝑦 = (𝑦 ∪ {𝑦})
32eleq2i 2237 . . . . 5 (suc 𝑦 ∈ suc 𝑦 ↔ suc 𝑦 ∈ (𝑦 ∪ {𝑦}))
4 elun 3268 . . . . . 6 (suc 𝑦 ∈ (𝑦 ∪ {𝑦}) ↔ (suc 𝑦𝑦 ∨ suc 𝑦 ∈ {𝑦}))
5 bj-nntrans 13986 . . . . . . . 8 (𝑦 ∈ ω → (suc 𝑦𝑦 → suc 𝑦𝑦))
6 sucssel 4409 . . . . . . . 8 (𝑦 ∈ ω → (suc 𝑦𝑦𝑦𝑦))
75, 6syld 45 . . . . . . 7 (𝑦 ∈ ω → (suc 𝑦𝑦𝑦𝑦))
8 vex 2733 . . . . . . . . . 10 𝑦 ∈ V
98sucid 4402 . . . . . . . . 9 𝑦 ∈ suc 𝑦
10 elsni 3601 . . . . . . . . 9 (suc 𝑦 ∈ {𝑦} → suc 𝑦 = 𝑦)
119, 10eleqtrid 2259 . . . . . . . 8 (suc 𝑦 ∈ {𝑦} → 𝑦𝑦)
1211a1i 9 . . . . . . 7 (𝑦 ∈ ω → (suc 𝑦 ∈ {𝑦} → 𝑦𝑦))
137, 12jaod 712 . . . . . 6 (𝑦 ∈ ω → ((suc 𝑦𝑦 ∨ suc 𝑦 ∈ {𝑦}) → 𝑦𝑦))
144, 13syl5bi 151 . . . . 5 (𝑦 ∈ ω → (suc 𝑦 ∈ (𝑦 ∪ {𝑦}) → 𝑦𝑦))
153, 14syl5bi 151 . . . 4 (𝑦 ∈ ω → (suc 𝑦 ∈ suc 𝑦𝑦𝑦))
1615con3d 626 . . 3 (𝑦 ∈ ω → (¬ 𝑦𝑦 → ¬ suc 𝑦 ∈ suc 𝑦))
1716rgen 2523 . 2 𝑦 ∈ ω (¬ 𝑦𝑦 → ¬ suc 𝑦 ∈ suc 𝑦)
18 ax-bdel 13856 . . . 4 BOUNDED 𝑥𝑥
1918ax-bdn 13852 . . 3 BOUNDED ¬ 𝑥𝑥
20 nfv 1521 . . 3 𝑥 ¬ ∅ ∈ ∅
21 nfv 1521 . . 3 𝑥 ¬ 𝑦𝑦
22 nfv 1521 . . 3 𝑥 ¬ suc 𝑦 ∈ suc 𝑦
23 eleq1 2233 . . . . . 6 (𝑥 = ∅ → (𝑥𝑥 ↔ ∅ ∈ 𝑥))
24 eleq2 2234 . . . . . 6 (𝑥 = ∅ → (∅ ∈ 𝑥 ↔ ∅ ∈ ∅))
2523, 24bitrd 187 . . . . 5 (𝑥 = ∅ → (𝑥𝑥 ↔ ∅ ∈ ∅))
2625notbid 662 . . . 4 (𝑥 = ∅ → (¬ 𝑥𝑥 ↔ ¬ ∅ ∈ ∅))
2726biimprd 157 . . 3 (𝑥 = ∅ → (¬ ∅ ∈ ∅ → ¬ 𝑥𝑥))
28 elequ1 2145 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑥))
29 elequ2 2146 . . . . . 6 (𝑥 = 𝑦 → (𝑦𝑥𝑦𝑦))
3028, 29bitrd 187 . . . . 5 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑦))
3130notbid 662 . . . 4 (𝑥 = 𝑦 → (¬ 𝑥𝑥 ↔ ¬ 𝑦𝑦))
3231biimpd 143 . . 3 (𝑥 = 𝑦 → (¬ 𝑥𝑥 → ¬ 𝑦𝑦))
33 eleq1 2233 . . . . . 6 (𝑥 = suc 𝑦 → (𝑥𝑥 ↔ suc 𝑦𝑥))
34 eleq2 2234 . . . . . 6 (𝑥 = suc 𝑦 → (suc 𝑦𝑥 ↔ suc 𝑦 ∈ suc 𝑦))
3533, 34bitrd 187 . . . . 5 (𝑥 = suc 𝑦 → (𝑥𝑥 ↔ suc 𝑦 ∈ suc 𝑦))
3635notbid 662 . . . 4 (𝑥 = suc 𝑦 → (¬ 𝑥𝑥 ↔ ¬ suc 𝑦 ∈ suc 𝑦))
3736biimprd 157 . . 3 (𝑥 = suc 𝑦 → (¬ suc 𝑦 ∈ suc 𝑦 → ¬ 𝑥𝑥))
38 nfcv 2312 . . 3 𝑥𝐴
39 nfv 1521 . . 3 𝑥 ¬ 𝐴𝐴
40 eleq1 2233 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑥𝐴𝑥))
41 eleq2 2234 . . . . . 6 (𝑥 = 𝐴 → (𝐴𝑥𝐴𝐴))
4240, 41bitrd 187 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑥𝐴𝐴))
4342notbid 662 . . . 4 (𝑥 = 𝐴 → (¬ 𝑥𝑥 ↔ ¬ 𝐴𝐴))
4443biimpd 143 . . 3 (𝑥 = 𝐴 → (¬ 𝑥𝑥 → ¬ 𝐴𝐴))
4519, 20, 21, 22, 27, 32, 37, 38, 39, 44bj-bdfindisg 13983 . 2 ((¬ ∅ ∈ ∅ ∧ ∀𝑦 ∈ ω (¬ 𝑦𝑦 → ¬ suc 𝑦 ∈ suc 𝑦)) → (𝐴 ∈ ω → ¬ 𝐴𝐴))
461, 17, 45mp2an 424 1 (𝐴 ∈ ω → ¬ 𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 703   = wceq 1348  wcel 2141  wral 2448  cun 3119  wss 3121  c0 3414  {csn 3583  suc csuc 4350  ωcom 4574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-nul 4115  ax-pr 4194  ax-un 4418  ax-bd0 13848  ax-bdor 13851  ax-bdn 13852  ax-bdal 13853  ax-bdex 13854  ax-bdeq 13855  ax-bdel 13856  ax-bdsb 13857  ax-bdsep 13919  ax-infvn 13976
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832  df-suc 4356  df-iom 4575  df-bdc 13876  df-bj-ind 13962
This theorem is referenced by:  bj-nnen2lp  13989
  Copyright terms: Public domain W3C validator