Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleqtrd | GIF version |
Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
Ref | Expression |
---|---|
eleqtrd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
eleqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
eleqtrd | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | eleqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 2 | eleq2d 2235 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) |
4 | 1, 3 | mpbid 146 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ∈ wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: eleqtrrd 2245 3eltr3d 2248 eleqtrid 2254 eleqtrdi 2258 opth1 4213 0nelop 4225 tfisi 4563 nnpredlt 4600 ercl 6508 erth 6541 ecelqsdm 6567 phpm 6827 exmidpweq 6871 cc2lem 7203 cc3 7205 suplocexprlemmu 7655 suplocexprlemloc 7658 lincmb01cmp 9935 fzopth 9992 fzoaddel2 10124 fzosubel2 10126 fzocatel 10130 zpnn0elfzo1 10139 fzoend 10153 peano2fzor 10163 monoord2 10408 ser3mono 10409 bcpasc 10675 zfz1isolemiso 10748 fisum0diag2 11384 isumsplit 11428 prodmodclem3 11512 prodmodclem2a 11513 nnmindc 11963 nnminle 11964 iscnp4 12818 cnrest2r 12837 txbasval 12867 txlm 12879 xmetunirn 12958 xblss2ps 13004 blbas 13033 mopntopon 13043 isxms2 13052 metcnpi 13115 metcnpi2 13116 tgioo 13146 cncfmpt2fcntop 13185 limccl 13228 limcimolemlt 13233 limccnp2cntop 13246 dvmulxxbr 13266 dvcoapbr 13271 dvcjbr 13272 dvrecap 13277 |
Copyright terms: Public domain | W3C validator |