| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleqtrd | GIF version | ||
| Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
| Ref | Expression |
|---|---|
| eleqtrd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| eleqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| eleqtrd | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | eleqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 2 | eleq2d 2275 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) |
| 4 | 1, 3 | mpbid 147 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: eleqtrrd 2285 3eltr3d 2288 eleqtrid 2294 eleqtrdi 2298 opth1 4281 0nelop 4293 tfisi 4636 nnpredlt 4673 iotam 5264 ercl 6633 erth 6668 ecelqsdm 6694 phpm 6964 exmidpweq 7008 cc2lem 7380 cc3 7382 suplocexprlemmu 7833 suplocexprlemloc 7836 lincmb01cmp 10127 fzopth 10185 fzoaddel2 10321 fzosubel2 10326 fzocatel 10330 zpnn0elfzo1 10339 fzoend 10353 peano2fzor 10363 monoord2 10633 ser3mono 10634 bcpasc 10913 zfz1isolemiso 10986 swrdclg 11106 fisum0diag2 11791 isumsplit 11835 prodmodclem3 11919 prodmodclem2a 11920 nnmindc 12388 nnminle 12389 basmexd 12925 basm 12926 prdsbasfn 13146 prdsbasprj 13147 pwsplusgval 13160 pwsmulrval 13161 mgm1 13235 grpidd 13248 gsumress 13260 sgrppropd 13278 ismndd 13302 mndpropd 13305 issubmnd 13307 imasmnd 13318 grpidd2 13406 pwsinvg 13477 imasgrp 13480 submmulg 13535 subginvcl 13552 subgcl 13553 subgsub 13555 subgmulg 13557 1nsgtrivd 13588 quseccl0g 13600 kerf1ghm 13643 rngass 13734 rngcl 13739 rngpropd 13750 imasrng 13751 srgcl 13765 srgass 13766 srg1zr 13782 srgpcomp 13785 srgpcompp 13786 srgpcomppsc 13787 crngcom 13809 ringass 13811 ringidmlem 13817 ringidss 13824 ringpropd 13833 imasring 13859 qusring2 13861 mulgass3 13880 dvdsrd 13889 1unit 13902 unitmulcl 13908 dvrvald 13929 rdivmuldivd 13939 elrhmunit 13972 rhmunitinv 13973 lringuplu 13991 subrngmcl 14004 subrg1 14026 subrgmcl 14028 subrgdv 14033 subrgunit 14034 resrhm 14043 aprval 14077 aprirr 14078 aprsym 14079 aprcotr 14080 lmodprop2d 14143 lidlss 14271 lidl0cl 14278 lidlacl 14279 lidlnegcl 14280 rnglidlmsgrp 14292 2idllidld 14301 2idlridld 14302 2idlcpblrng 14318 qus1 14321 quscrng 14328 rspsn 14329 znf1o 14446 psrbagfi 14468 psrelbas 14470 iscnp4 14723 cnrest2r 14742 txbasval 14772 txlm 14784 xmetunirn 14863 xblss2ps 14909 blbas 14938 mopntopon 14948 isxms2 14957 metcnpi 15020 metcnpi2 15021 tgioo 15059 cncfmpt2fcntop 15104 limccl 15164 limcimolemlt 15169 limccnp2cntop 15182 dvmulxxbr 15207 dvcoapbr 15212 dvcjbr 15213 dvrecap 15218 plyaddlem1 15252 plymullem1 15253 plycoeid3 15262 lgseisenlem4 15583 |
| Copyright terms: Public domain | W3C validator |