| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eleqtrd | GIF version | ||
| Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) | 
| Ref | Expression | 
|---|---|
| eleqtrd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) | 
| eleqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) | 
| Ref | Expression | 
|---|---|
| eleqtrd | ⊢ (𝜑 → 𝐴 ∈ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleqtrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | eleqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 2 | eleq2d 2266 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) | 
| 4 | 1, 3 | mpbid 147 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 | 
| This theorem is referenced by: eleqtrrd 2276 3eltr3d 2279 eleqtrid 2285 eleqtrdi 2289 opth1 4269 0nelop 4281 tfisi 4623 nnpredlt 4660 iotam 5250 ercl 6603 erth 6638 ecelqsdm 6664 phpm 6926 exmidpweq 6970 cc2lem 7333 cc3 7335 suplocexprlemmu 7785 suplocexprlemloc 7788 lincmb01cmp 10078 fzopth 10136 fzoaddel2 10269 fzosubel2 10271 fzocatel 10275 zpnn0elfzo1 10284 fzoend 10298 peano2fzor 10308 monoord2 10578 ser3mono 10579 bcpasc 10858 zfz1isolemiso 10931 fisum0diag2 11612 isumsplit 11656 prodmodclem3 11740 prodmodclem2a 11741 nnmindc 12201 nnminle 12202 basmexd 12738 basm 12739 mgm1 13013 grpidd 13026 gsumress 13038 sgrppropd 13056 ismndd 13078 mndpropd 13081 issubmnd 13083 grpidd2 13173 imasgrp 13241 submmulg 13296 subginvcl 13313 subgcl 13314 subgsub 13316 subgmulg 13318 1nsgtrivd 13349 quseccl0g 13361 kerf1ghm 13404 rngass 13495 rngcl 13500 rngpropd 13511 imasrng 13512 srgcl 13526 srgass 13527 srg1zr 13543 srgpcomp 13546 srgpcompp 13547 srgpcomppsc 13548 crngcom 13570 ringass 13572 ringidmlem 13578 ringidss 13585 ringpropd 13594 imasring 13620 qusring2 13622 mulgass3 13641 dvdsrd 13650 1unit 13663 unitmulcl 13669 dvrvald 13690 rdivmuldivd 13700 elrhmunit 13733 rhmunitinv 13734 lringuplu 13752 subrngmcl 13765 subrg1 13787 subrgmcl 13789 subrgdv 13794 subrgunit 13795 resrhm 13804 aprval 13838 aprirr 13839 aprsym 13840 aprcotr 13841 lmodprop2d 13904 lidlss 14032 lidl0cl 14039 lidlacl 14040 lidlnegcl 14041 rnglidlmsgrp 14053 2idllidld 14062 2idlridld 14063 2idlcpblrng 14079 qus1 14082 quscrng 14089 rspsn 14090 znf1o 14207 psrelbas 14228 iscnp4 14454 cnrest2r 14473 txbasval 14503 txlm 14515 xmetunirn 14594 xblss2ps 14640 blbas 14669 mopntopon 14679 isxms2 14688 metcnpi 14751 metcnpi2 14752 tgioo 14790 cncfmpt2fcntop 14835 limccl 14895 limcimolemlt 14900 limccnp2cntop 14913 dvmulxxbr 14938 dvcoapbr 14943 dvcjbr 14944 dvrecap 14949 plyaddlem1 14983 plymullem1 14984 plycoeid3 14993 lgseisenlem4 15314 | 
| Copyright terms: Public domain | W3C validator |