![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleqtrd | GIF version |
Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
Ref | Expression |
---|---|
eleqtrd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
eleqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
eleqtrd | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | eleqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
3 | 2 | eleq2d 2263 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) |
4 | 1, 3 | mpbid 147 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: eleqtrrd 2273 3eltr3d 2276 eleqtrid 2282 eleqtrdi 2286 opth1 4265 0nelop 4277 tfisi 4619 nnpredlt 4656 iotam 5246 ercl 6598 erth 6633 ecelqsdm 6659 phpm 6921 exmidpweq 6965 cc2lem 7326 cc3 7328 suplocexprlemmu 7778 suplocexprlemloc 7781 lincmb01cmp 10069 fzopth 10127 fzoaddel2 10260 fzosubel2 10262 fzocatel 10266 zpnn0elfzo1 10275 fzoend 10289 peano2fzor 10299 monoord2 10557 ser3mono 10558 bcpasc 10837 zfz1isolemiso 10910 fisum0diag2 11590 isumsplit 11634 prodmodclem3 11718 prodmodclem2a 11719 nnmindc 12171 nnminle 12172 basmexd 12678 basm 12679 mgm1 12953 grpidd 12966 gsumress 12978 sgrppropd 12996 ismndd 13018 mndpropd 13021 issubmnd 13023 grpidd2 13113 imasgrp 13181 submmulg 13236 subginvcl 13253 subgcl 13254 subgsub 13256 subgmulg 13258 1nsgtrivd 13289 quseccl0g 13301 kerf1ghm 13344 rngass 13435 rngcl 13440 rngpropd 13451 imasrng 13452 srgcl 13466 srgass 13467 srg1zr 13483 srgpcomp 13486 srgpcompp 13487 srgpcomppsc 13488 crngcom 13510 ringass 13512 ringidmlem 13518 ringidss 13525 ringpropd 13534 imasring 13560 qusring2 13562 mulgass3 13581 dvdsrd 13590 1unit 13603 unitmulcl 13609 dvrvald 13630 rdivmuldivd 13640 elrhmunit 13673 rhmunitinv 13674 lringuplu 13692 subrngmcl 13705 subrg1 13727 subrgmcl 13729 subrgdv 13734 subrgunit 13735 resrhm 13744 aprval 13778 aprirr 13779 aprsym 13780 aprcotr 13781 lmodprop2d 13844 lidlss 13972 lidl0cl 13979 lidlacl 13980 lidlnegcl 13981 rnglidlmsgrp 13993 2idllidld 14002 2idlridld 14003 2idlcpblrng 14019 qus1 14022 quscrng 14029 rspsn 14030 znf1o 14139 psrelbas 14160 iscnp4 14386 cnrest2r 14405 txbasval 14435 txlm 14447 xmetunirn 14526 xblss2ps 14572 blbas 14601 mopntopon 14611 isxms2 14620 metcnpi 14683 metcnpi2 14684 tgioo 14714 cncfmpt2fcntop 14753 limccl 14813 limcimolemlt 14818 limccnp2cntop 14831 dvmulxxbr 14851 dvcoapbr 14856 dvcjbr 14857 dvrecap 14862 plyaddlem1 14893 plymullem1 14894 lgseisenlem4 15189 |
Copyright terms: Public domain | W3C validator |