| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleqtrd | GIF version | ||
| Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
| Ref | Expression |
|---|---|
| eleqtrd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| eleqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| eleqtrd | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | eleqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 2 | eleq2d 2275 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) |
| 4 | 1, 3 | mpbid 147 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: eleqtrrd 2285 3eltr3d 2288 eleqtrid 2294 eleqtrdi 2298 opth1 4280 0nelop 4292 tfisi 4635 nnpredlt 4672 iotam 5263 ercl 6631 erth 6666 ecelqsdm 6692 phpm 6962 exmidpweq 7006 cc2lem 7378 cc3 7380 suplocexprlemmu 7831 suplocexprlemloc 7834 lincmb01cmp 10125 fzopth 10183 fzoaddel2 10319 fzosubel2 10324 fzocatel 10328 zpnn0elfzo1 10337 fzoend 10351 peano2fzor 10361 monoord2 10631 ser3mono 10632 bcpasc 10911 zfz1isolemiso 10984 swrdclg 11103 fisum0diag2 11758 isumsplit 11802 prodmodclem3 11886 prodmodclem2a 11887 nnmindc 12355 nnminle 12356 basmexd 12892 basm 12893 prdsbasfn 13113 prdsbasprj 13114 pwsplusgval 13127 pwsmulrval 13128 mgm1 13202 grpidd 13215 gsumress 13227 sgrppropd 13245 ismndd 13269 mndpropd 13272 issubmnd 13274 imasmnd 13285 grpidd2 13373 pwsinvg 13444 imasgrp 13447 submmulg 13502 subginvcl 13519 subgcl 13520 subgsub 13522 subgmulg 13524 1nsgtrivd 13555 quseccl0g 13567 kerf1ghm 13610 rngass 13701 rngcl 13706 rngpropd 13717 imasrng 13718 srgcl 13732 srgass 13733 srg1zr 13749 srgpcomp 13752 srgpcompp 13753 srgpcomppsc 13754 crngcom 13776 ringass 13778 ringidmlem 13784 ringidss 13791 ringpropd 13800 imasring 13826 qusring2 13828 mulgass3 13847 dvdsrd 13856 1unit 13869 unitmulcl 13875 dvrvald 13896 rdivmuldivd 13906 elrhmunit 13939 rhmunitinv 13940 lringuplu 13958 subrngmcl 13971 subrg1 13993 subrgmcl 13995 subrgdv 14000 subrgunit 14001 resrhm 14010 aprval 14044 aprirr 14045 aprsym 14046 aprcotr 14047 lmodprop2d 14110 lidlss 14238 lidl0cl 14245 lidlacl 14246 lidlnegcl 14247 rnglidlmsgrp 14259 2idllidld 14268 2idlridld 14269 2idlcpblrng 14285 qus1 14288 quscrng 14295 rspsn 14296 znf1o 14413 psrbagfi 14435 psrelbas 14437 iscnp4 14690 cnrest2r 14709 txbasval 14739 txlm 14751 xmetunirn 14830 xblss2ps 14876 blbas 14905 mopntopon 14915 isxms2 14924 metcnpi 14987 metcnpi2 14988 tgioo 15026 cncfmpt2fcntop 15071 limccl 15131 limcimolemlt 15136 limccnp2cntop 15149 dvmulxxbr 15174 dvcoapbr 15179 dvcjbr 15180 dvrecap 15185 plyaddlem1 15219 plymullem1 15220 plycoeid3 15229 lgseisenlem4 15550 |
| Copyright terms: Public domain | W3C validator |