| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleqtrd | GIF version | ||
| Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
| Ref | Expression |
|---|---|
| eleqtrd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| eleqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| eleqtrd | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | eleqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 2 | eleq2d 2266 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) |
| 4 | 1, 3 | mpbid 147 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: eleqtrrd 2276 3eltr3d 2279 eleqtrid 2285 eleqtrdi 2289 opth1 4270 0nelop 4282 tfisi 4624 nnpredlt 4661 iotam 5251 ercl 6604 erth 6639 ecelqsdm 6665 phpm 6927 exmidpweq 6971 cc2lem 7335 cc3 7337 suplocexprlemmu 7787 suplocexprlemloc 7790 lincmb01cmp 10080 fzopth 10138 fzoaddel2 10271 fzosubel2 10273 fzocatel 10277 zpnn0elfzo1 10286 fzoend 10300 peano2fzor 10310 monoord2 10580 ser3mono 10581 bcpasc 10860 zfz1isolemiso 10933 fisum0diag2 11614 isumsplit 11658 prodmodclem3 11742 prodmodclem2a 11743 nnmindc 12211 nnminle 12212 basmexd 12748 basm 12749 mgm1 13023 grpidd 13036 gsumress 13048 sgrppropd 13066 ismndd 13088 mndpropd 13091 issubmnd 13093 grpidd2 13183 imasgrp 13251 submmulg 13306 subginvcl 13323 subgcl 13324 subgsub 13326 subgmulg 13328 1nsgtrivd 13359 quseccl0g 13371 kerf1ghm 13414 rngass 13505 rngcl 13510 rngpropd 13521 imasrng 13522 srgcl 13536 srgass 13537 srg1zr 13553 srgpcomp 13556 srgpcompp 13557 srgpcomppsc 13558 crngcom 13580 ringass 13582 ringidmlem 13588 ringidss 13595 ringpropd 13604 imasring 13630 qusring2 13632 mulgass3 13651 dvdsrd 13660 1unit 13673 unitmulcl 13679 dvrvald 13700 rdivmuldivd 13710 elrhmunit 13743 rhmunitinv 13744 lringuplu 13762 subrngmcl 13775 subrg1 13797 subrgmcl 13799 subrgdv 13804 subrgunit 13805 resrhm 13814 aprval 13848 aprirr 13849 aprsym 13850 aprcotr 13851 lmodprop2d 13914 lidlss 14042 lidl0cl 14049 lidlacl 14050 lidlnegcl 14051 rnglidlmsgrp 14063 2idllidld 14072 2idlridld 14073 2idlcpblrng 14089 qus1 14092 quscrng 14099 rspsn 14100 znf1o 14217 psrelbas 14238 iscnp4 14464 cnrest2r 14483 txbasval 14513 txlm 14525 xmetunirn 14604 xblss2ps 14650 blbas 14679 mopntopon 14689 isxms2 14698 metcnpi 14761 metcnpi2 14762 tgioo 14800 cncfmpt2fcntop 14845 limccl 14905 limcimolemlt 14910 limccnp2cntop 14923 dvmulxxbr 14948 dvcoapbr 14953 dvcjbr 14954 dvrecap 14959 plyaddlem1 14993 plymullem1 14994 plycoeid3 15003 lgseisenlem4 15324 |
| Copyright terms: Public domain | W3C validator |