| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleqtrd | GIF version | ||
| Description: Deduction that substitutes equal classes into membership. (Contributed by NM, 14-Dec-2004.) |
| Ref | Expression |
|---|---|
| eleqtrd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| eleqtrd.2 | ⊢ (𝜑 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| eleqtrd | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | eleqtrd.2 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐶) | |
| 3 | 2 | eleq2d 2266 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) |
| 4 | 1, 3 | mpbid 147 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: eleqtrrd 2276 3eltr3d 2279 eleqtrid 2285 eleqtrdi 2289 opth1 4270 0nelop 4282 tfisi 4624 nnpredlt 4661 iotam 5251 ercl 6612 erth 6647 ecelqsdm 6673 phpm 6935 exmidpweq 6979 cc2lem 7351 cc3 7353 suplocexprlemmu 7804 suplocexprlemloc 7807 lincmb01cmp 10097 fzopth 10155 fzoaddel2 10288 fzosubel2 10290 fzocatel 10294 zpnn0elfzo1 10303 fzoend 10317 peano2fzor 10327 monoord2 10597 ser3mono 10598 bcpasc 10877 zfz1isolemiso 10950 fisum0diag2 11631 isumsplit 11675 prodmodclem3 11759 prodmodclem2a 11760 nnmindc 12228 nnminle 12229 basmexd 12765 basm 12766 prdsbasfn 12985 prdsbasprj 12986 pwsplusgval 12999 pwsmulrval 13000 mgm1 13074 grpidd 13087 gsumress 13099 sgrppropd 13117 ismndd 13141 mndpropd 13144 issubmnd 13146 imasmnd 13157 grpidd2 13245 pwsinvg 13316 imasgrp 13319 submmulg 13374 subginvcl 13391 subgcl 13392 subgsub 13394 subgmulg 13396 1nsgtrivd 13427 quseccl0g 13439 kerf1ghm 13482 rngass 13573 rngcl 13578 rngpropd 13589 imasrng 13590 srgcl 13604 srgass 13605 srg1zr 13621 srgpcomp 13624 srgpcompp 13625 srgpcomppsc 13626 crngcom 13648 ringass 13650 ringidmlem 13656 ringidss 13663 ringpropd 13672 imasring 13698 qusring2 13700 mulgass3 13719 dvdsrd 13728 1unit 13741 unitmulcl 13747 dvrvald 13768 rdivmuldivd 13778 elrhmunit 13811 rhmunitinv 13812 lringuplu 13830 subrngmcl 13843 subrg1 13865 subrgmcl 13867 subrgdv 13872 subrgunit 13873 resrhm 13882 aprval 13916 aprirr 13917 aprsym 13918 aprcotr 13919 lmodprop2d 13982 lidlss 14110 lidl0cl 14117 lidlacl 14118 lidlnegcl 14119 rnglidlmsgrp 14131 2idllidld 14140 2idlridld 14141 2idlcpblrng 14157 qus1 14160 quscrng 14167 rspsn 14168 znf1o 14285 psrbagfi 14307 psrelbas 14309 iscnp4 14562 cnrest2r 14581 txbasval 14611 txlm 14623 xmetunirn 14702 xblss2ps 14748 blbas 14777 mopntopon 14787 isxms2 14796 metcnpi 14859 metcnpi2 14860 tgioo 14898 cncfmpt2fcntop 14943 limccl 15003 limcimolemlt 15008 limccnp2cntop 15021 dvmulxxbr 15046 dvcoapbr 15051 dvcjbr 15052 dvrecap 15057 plyaddlem1 15091 plymullem1 15092 plycoeid3 15101 lgseisenlem4 15422 |
| Copyright terms: Public domain | W3C validator |