ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleqtrid Unicode version

Theorem eleqtrid 2259
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
eleqtrid.1  |-  A  e.  B
eleqtrid.2  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
eleqtrid  |-  ( ph  ->  A  e.  C )

Proof of Theorem eleqtrid
StepHypRef Expression
1 eleqtrid.1 . . 3  |-  A  e.  B
21a1i 9 . 2  |-  ( ph  ->  A  e.  B )
3 eleqtrid.2 . 2  |-  ( ph  ->  B  =  C )
42, 3eleqtrd 2249 1  |-  ( ph  ->  A  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-clel 2166
This theorem is referenced by:  eleqtrrid  2260  opth1  4221  opth  4222  eqelsuc  4404  txdis  13071  bj-nnelirr  13988
  Copyright terms: Public domain W3C validator