| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleqtrid | Unicode version | ||
| Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eleqtrid.1 |
|
| eleqtrid.2 |
|
| Ref | Expression |
|---|---|
| eleqtrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrid.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | eleqtrid.2 |
. 2
| |
| 4 | 2, 3 | eleqtrd 2275 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: eleqtrrid 2286 opth1 4269 opth 4270 eqelsuc 4454 2omotaplemst 7325 txdis 14513 bj-nnelirr 15599 |
| Copyright terms: Public domain | W3C validator |