ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eleqtrid Unicode version

Theorem eleqtrid 2278
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
eleqtrid.1  |-  A  e.  B
eleqtrid.2  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
eleqtrid  |-  ( ph  ->  A  e.  C )

Proof of Theorem eleqtrid
StepHypRef Expression
1 eleqtrid.1 . . 3  |-  A  e.  B
21a1i 9 . 2  |-  ( ph  ->  A  e.  B )
3 eleqtrid.2 . 2  |-  ( ph  ->  B  =  C )
42, 3eleqtrd 2268 1  |-  ( ph  ->  A  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-cleq 2182  df-clel 2185
This theorem is referenced by:  eleqtrrid  2279  opth1  4251  opth  4252  eqelsuc  4434  2omotaplemst  7275  txdis  14174  bj-nnelirr  15102
  Copyright terms: Public domain W3C validator