Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eleqtrid | Unicode version |
Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
eleqtrid.1 | |
eleqtrid.2 |
Ref | Expression |
---|---|
eleqtrid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleqtrid.1 | . . 3 | |
2 | 1 | a1i 9 | . 2 |
3 | eleqtrid.2 | . 2 | |
4 | 2, 3 | eleqtrd 2245 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 df-clel 2161 |
This theorem is referenced by: eleqtrrid 2256 opth1 4214 opth 4215 eqelsuc 4397 txdis 12917 bj-nnelirr 13835 |
Copyright terms: Public domain | W3C validator |