| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleqtrid | Unicode version | ||
| Description: B membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
| Ref | Expression |
|---|---|
| eleqtrid.1 |
|
| eleqtrid.2 |
|
| Ref | Expression |
|---|---|
| eleqtrid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleqtrid.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | eleqtrid.2 |
. 2
| |
| 4 | 2, 3 | eleqtrd 2286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-clel 2203 |
| This theorem is referenced by: eleqtrrid 2297 opth1 4298 opth 4299 eqelsuc 4484 2omotaplemst 7405 txdis 14864 bj-nnelirr 16088 |
| Copyright terms: Public domain | W3C validator |