| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqelsuc | GIF version | ||
| Description: A set belongs to the successor of an equal set. (Contributed by NM, 18-Aug-1994.) |
| Ref | Expression |
|---|---|
| eqelsuc.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eqelsuc | ⊢ (𝐴 = 𝐵 → 𝐴 ∈ suc 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqelsuc.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | sucid 4482 | . 2 ⊢ 𝐴 ∈ suc 𝐴 |
| 3 | suceq 4467 | . 2 ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) | |
| 4 | 2, 3 | eleqtrid 2296 | 1 ⊢ (𝐴 = 𝐵 → 𝐴 ∈ suc 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2178 Vcvv 2776 suc csuc 4430 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-suc 4436 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |