ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqelsuc GIF version

Theorem eqelsuc 4237
Description: A set belongs to the successor of an equal set. (Contributed by NM, 18-Aug-1994.)
Hypothesis
Ref Expression
eqelsuc.1 𝐴 ∈ V
Assertion
Ref Expression
eqelsuc (𝐴 = 𝐵𝐴 ∈ suc 𝐵)

Proof of Theorem eqelsuc
StepHypRef Expression
1 eqelsuc.1 . . 3 𝐴 ∈ V
21sucid 4235 . 2 𝐴 ∈ suc 𝐴
3 suceq 4220 . 2 (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵)
42, 3syl5eleq 2176 1 (𝐴 = 𝐵𝐴 ∈ suc 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1289  wcel 1438  Vcvv 2619  suc csuc 4183
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-un 3001  df-sn 3447  df-suc 4189
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator