![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqelsuc | GIF version |
Description: A set belongs to the successor of an equal set. (Contributed by NM, 18-Aug-1994.) |
Ref | Expression |
---|---|
eqelsuc.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eqelsuc | ⊢ (𝐴 = 𝐵 → 𝐴 ∈ suc 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqelsuc.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | sucid 4429 | . 2 ⊢ 𝐴 ∈ suc 𝐴 |
3 | suceq 4414 | . 2 ⊢ (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵) | |
4 | 2, 3 | eleqtrid 2276 | 1 ⊢ (𝐴 = 𝐵 → 𝐴 ∈ suc 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 ∈ wcel 2158 Vcvv 2749 suc csuc 4377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-v 2751 df-un 3145 df-sn 3610 df-suc 4383 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |