ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqelsuc GIF version

Theorem eqelsuc 4420
Description: A set belongs to the successor of an equal set. (Contributed by NM, 18-Aug-1994.)
Hypothesis
Ref Expression
eqelsuc.1 𝐴 ∈ V
Assertion
Ref Expression
eqelsuc (𝐴 = 𝐵𝐴 ∈ suc 𝐵)

Proof of Theorem eqelsuc
StepHypRef Expression
1 eqelsuc.1 . . 3 𝐴 ∈ V
21sucid 4418 . 2 𝐴 ∈ suc 𝐴
3 suceq 4403 . 2 (𝐴 = 𝐵 → suc 𝐴 = suc 𝐵)
42, 3eleqtrid 2266 1 (𝐴 = 𝐵𝐴 ∈ suc 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  Vcvv 2738  suc csuc 4366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-un 3134  df-sn 3599  df-suc 4372
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator