ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opth1 GIF version

Theorem opth1 4221
Description: Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opth1.1 𝐴 ∈ V
opth1.2 𝐵 ∈ V
Assertion
Ref Expression
opth1 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶)

Proof of Theorem opth1
StepHypRef Expression
1 opth1.1 . . . 4 𝐴 ∈ V
21sneqr 3747 . . 3 ({𝐴} = {𝐶} → 𝐴 = 𝐶)
32a1i 9 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶} → 𝐴 = 𝐶))
4 opth1.2 . . . . . . . . 9 𝐵 ∈ V
51, 4opi1 4217 . . . . . . . 8 {𝐴} ∈ ⟨𝐴, 𝐵
6 id 19 . . . . . . . 8 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩)
75, 6eleqtrid 2259 . . . . . . 7 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → {𝐴} ∈ ⟨𝐶, 𝐷⟩)
8 oprcl 3789 . . . . . . 7 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → (𝐶 ∈ V ∧ 𝐷 ∈ V))
97, 8syl 14 . . . . . 6 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → (𝐶 ∈ V ∧ 𝐷 ∈ V))
109simpld 111 . . . . 5 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐶 ∈ V)
11 prid1g 3687 . . . . 5 (𝐶 ∈ V → 𝐶 ∈ {𝐶, 𝐷})
1210, 11syl 14 . . . 4 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐶 ∈ {𝐶, 𝐷})
13 eleq2 2234 . . . 4 ({𝐴} = {𝐶, 𝐷} → (𝐶 ∈ {𝐴} ↔ 𝐶 ∈ {𝐶, 𝐷}))
1412, 13syl5ibrcom 156 . . 3 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶, 𝐷} → 𝐶 ∈ {𝐴}))
15 elsni 3601 . . . 4 (𝐶 ∈ {𝐴} → 𝐶 = 𝐴)
1615eqcomd 2176 . . 3 (𝐶 ∈ {𝐴} → 𝐴 = 𝐶)
1714, 16syl6 33 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶, 𝐷} → 𝐴 = 𝐶))
18 dfopg 3763 . . . . 5 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → ⟨𝐶, 𝐷⟩ = {{𝐶}, {𝐶, 𝐷}})
197, 8, 183syl 17 . . . 4 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ⟨𝐶, 𝐷⟩ = {{𝐶}, {𝐶, 𝐷}})
207, 19eleqtrd 2249 . . 3 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → {𝐴} ∈ {{𝐶}, {𝐶, 𝐷}})
21 elpri 3606 . . 3 ({𝐴} ∈ {{𝐶}, {𝐶, 𝐷}} → ({𝐴} = {𝐶} ∨ {𝐴} = {𝐶, 𝐷}))
2220, 21syl 14 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶} ∨ {𝐴} = {𝐶, 𝐷}))
233, 17, 22mpjaod 713 1 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 703   = wceq 1348  wcel 2141  Vcvv 2730  {csn 3583  {cpr 3584  cop 3586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592
This theorem is referenced by:  opth  4222  dmsnopg  5082  funcnvsn  5243  oprabid  5885  pwle2  14031
  Copyright terms: Public domain W3C validator