ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opth1 GIF version

Theorem opth1 4036
Description: Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opth1.1 𝐴 ∈ V
opth1.2 𝐵 ∈ V
Assertion
Ref Expression
opth1 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶)

Proof of Theorem opth1
StepHypRef Expression
1 opth1.1 . . . 4 𝐴 ∈ V
21sneqr 3587 . . 3 ({𝐴} = {𝐶} → 𝐴 = 𝐶)
32a1i 9 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶} → 𝐴 = 𝐶))
4 opth1.2 . . . . . . . . 9 𝐵 ∈ V
51, 4opi1 4032 . . . . . . . 8 {𝐴} ∈ ⟨𝐴, 𝐵
6 id 19 . . . . . . . 8 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩)
75, 6syl5eleq 2173 . . . . . . 7 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → {𝐴} ∈ ⟨𝐶, 𝐷⟩)
8 oprcl 3629 . . . . . . 7 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → (𝐶 ∈ V ∧ 𝐷 ∈ V))
97, 8syl 14 . . . . . 6 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → (𝐶 ∈ V ∧ 𝐷 ∈ V))
109simpld 110 . . . . 5 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐶 ∈ V)
11 prid1g 3529 . . . . 5 (𝐶 ∈ V → 𝐶 ∈ {𝐶, 𝐷})
1210, 11syl 14 . . . 4 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐶 ∈ {𝐶, 𝐷})
13 eleq2 2148 . . . 4 ({𝐴} = {𝐶, 𝐷} → (𝐶 ∈ {𝐴} ↔ 𝐶 ∈ {𝐶, 𝐷}))
1412, 13syl5ibrcom 155 . . 3 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶, 𝐷} → 𝐶 ∈ {𝐴}))
15 elsni 3449 . . . 4 (𝐶 ∈ {𝐴} → 𝐶 = 𝐴)
1615eqcomd 2090 . . 3 (𝐶 ∈ {𝐴} → 𝐴 = 𝐶)
1714, 16syl6 33 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶, 𝐷} → 𝐴 = 𝐶))
18 dfopg 3603 . . . . 5 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → ⟨𝐶, 𝐷⟩ = {{𝐶}, {𝐶, 𝐷}})
197, 8, 183syl 17 . . . 4 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ⟨𝐶, 𝐷⟩ = {{𝐶}, {𝐶, 𝐷}})
207, 19eleqtrd 2163 . . 3 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → {𝐴} ∈ {{𝐶}, {𝐶, 𝐷}})
21 elpri 3454 . . 3 ({𝐴} ∈ {{𝐶}, {𝐶, 𝐷}} → ({𝐴} = {𝐶} ∨ {𝐴} = {𝐶, 𝐷}))
2220, 21syl 14 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶} ∨ {𝐴} = {𝐶, 𝐷}))
233, 17, 22mpjaod 671 1 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wo 662   = wceq 1287  wcel 1436  Vcvv 2615  {csn 3431  {cpr 3432  cop 3434
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3931  ax-pow 3983
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-v 2617  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440
This theorem is referenced by:  opth  4037  dmsnopg  4865  funcnvsn  5021  oprabid  5632
  Copyright terms: Public domain W3C validator