ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opth1 GIF version

Theorem opth1 4214
Description: Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opth1.1 𝐴 ∈ V
opth1.2 𝐵 ∈ V
Assertion
Ref Expression
opth1 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶)

Proof of Theorem opth1
StepHypRef Expression
1 opth1.1 . . . 4 𝐴 ∈ V
21sneqr 3740 . . 3 ({𝐴} = {𝐶} → 𝐴 = 𝐶)
32a1i 9 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶} → 𝐴 = 𝐶))
4 opth1.2 . . . . . . . . 9 𝐵 ∈ V
51, 4opi1 4210 . . . . . . . 8 {𝐴} ∈ ⟨𝐴, 𝐵
6 id 19 . . . . . . . 8 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩)
75, 6eleqtrid 2255 . . . . . . 7 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → {𝐴} ∈ ⟨𝐶, 𝐷⟩)
8 oprcl 3782 . . . . . . 7 ({𝐴} ∈ ⟨𝐶, 𝐷⟩ → (𝐶 ∈ V ∧ 𝐷 ∈ V))
97, 8syl 14 . . . . . 6 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → (𝐶 ∈ V ∧ 𝐷 ∈ V))
109simpld 111 . . . . 5 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐶 ∈ V)
11 prid1g 3680 . . . . 5 (𝐶 ∈ V → 𝐶 ∈ {𝐶, 𝐷})
1210, 11syl 14 . . . 4 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐶 ∈ {𝐶, 𝐷})
13 eleq2 2230 . . . 4 ({𝐴} = {𝐶, 𝐷} → (𝐶 ∈ {𝐴} ↔ 𝐶 ∈ {𝐶, 𝐷}))
1412, 13syl5ibrcom 156 . . 3 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶, 𝐷} → 𝐶 ∈ {𝐴}))
15 elsni 3594 . . . 4 (𝐶 ∈ {𝐴} → 𝐶 = 𝐴)
1615eqcomd 2171 . . 3 (𝐶 ∈ {𝐴} → 𝐴 = 𝐶)
1714, 16syl6 33 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶, 𝐷} → 𝐴 = 𝐶))
18 dfopg 3756 . . . . 5 ((𝐶 ∈ V ∧ 𝐷 ∈ V) → ⟨𝐶, 𝐷⟩ = {{𝐶}, {𝐶, 𝐷}})
197, 8, 183syl 17 . . . 4 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ⟨𝐶, 𝐷⟩ = {{𝐶}, {𝐶, 𝐷}})
207, 19eleqtrd 2245 . . 3 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → {𝐴} ∈ {{𝐶}, {𝐶, 𝐷}})
21 elpri 3599 . . 3 ({𝐴} ∈ {{𝐶}, {𝐶, 𝐷}} → ({𝐴} = {𝐶} ∨ {𝐴} = {𝐶, 𝐷}))
2220, 21syl 14 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ({𝐴} = {𝐶} ∨ {𝐴} = {𝐶, 𝐷}))
233, 17, 22mpjaod 708 1 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → 𝐴 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698   = wceq 1343  wcel 2136  Vcvv 2726  {csn 3576  {cpr 3577  cop 3579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585
This theorem is referenced by:  opth  4215  dmsnopg  5075  funcnvsn  5233  oprabid  5874  pwle2  13878
  Copyright terms: Public domain W3C validator