| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbco | GIF version | ||
| Description: A composition law for substitution. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbco | ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equsb2 1832 | . . 3 ⊢ [𝑦 / 𝑥]𝑦 = 𝑥 | |
| 2 | sbequ12 1817 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑)) | |
| 3 | 2 | bicomd 141 | . . . 4 ⊢ (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
| 4 | 3 | sbimi 1810 | . . 3 ⊢ ([𝑦 / 𝑥]𝑦 = 𝑥 → [𝑦 / 𝑥]([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
| 5 | 1, 4 | ax-mp 5 | . 2 ⊢ [𝑦 / 𝑥]([𝑥 / 𝑦]𝜑 ↔ 𝜑) |
| 6 | sbbi 2010 | . 2 ⊢ ([𝑦 / 𝑥]([𝑥 / 𝑦]𝜑 ↔ 𝜑) ↔ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 7 | 5, 6 | mpbi 145 | 1 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 [wsb 1808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 |
| This theorem is referenced by: sbco3v 2020 |
| Copyright terms: Public domain | W3C validator |