ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco GIF version

Theorem sbco 1997
Description: A composition law for substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbco ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)

Proof of Theorem sbco
StepHypRef Expression
1 equsb2 1810 . . 3 [𝑦 / 𝑥]𝑦 = 𝑥
2 sbequ12 1795 . . . . 5 (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑))
32bicomd 141 . . . 4 (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑𝜑))
43sbimi 1788 . . 3 ([𝑦 / 𝑥]𝑦 = 𝑥 → [𝑦 / 𝑥]([𝑥 / 𝑦]𝜑𝜑))
51, 4ax-mp 5 . 2 [𝑦 / 𝑥]([𝑥 / 𝑦]𝜑𝜑)
6 sbbi 1988 . 2 ([𝑦 / 𝑥]([𝑥 / 𝑦]𝜑𝜑) ↔ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑))
75, 6mpbi 145 1 ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787
This theorem is referenced by:  sbco3v  1998
  Copyright terms: Public domain W3C validator