![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbco | GIF version |
Description: A composition law for substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbco | ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsb2 1797 | . . 3 ⊢ [𝑦 / 𝑥]𝑦 = 𝑥 | |
2 | sbequ12 1782 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑)) | |
3 | 2 | bicomd 141 | . . . 4 ⊢ (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
4 | 3 | sbimi 1775 | . . 3 ⊢ ([𝑦 / 𝑥]𝑦 = 𝑥 → [𝑦 / 𝑥]([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
5 | 1, 4 | ax-mp 5 | . 2 ⊢ [𝑦 / 𝑥]([𝑥 / 𝑦]𝜑 ↔ 𝜑) |
6 | sbbi 1975 | . 2 ⊢ ([𝑦 / 𝑥]([𝑥 / 𝑦]𝜑 ↔ 𝜑) ↔ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
7 | 5, 6 | mpbi 145 | 1 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 [wsb 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 |
This theorem is referenced by: sbco3v 1985 |
Copyright terms: Public domain | W3C validator |