Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbco | GIF version |
Description: A composition law for substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbco | ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equsb2 1779 | . . 3 ⊢ [𝑦 / 𝑥]𝑦 = 𝑥 | |
2 | sbequ12 1764 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑)) | |
3 | 2 | bicomd 140 | . . . 4 ⊢ (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
4 | 3 | sbimi 1757 | . . 3 ⊢ ([𝑦 / 𝑥]𝑦 = 𝑥 → [𝑦 / 𝑥]([𝑥 / 𝑦]𝜑 ↔ 𝜑)) |
5 | 1, 4 | ax-mp 5 | . 2 ⊢ [𝑦 / 𝑥]([𝑥 / 𝑦]𝜑 ↔ 𝜑) |
6 | sbbi 1952 | . 2 ⊢ ([𝑦 / 𝑥]([𝑥 / 𝑦]𝜑 ↔ 𝜑) ↔ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
7 | 5, 6 | mpbi 144 | 1 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 [wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: sbco3v 1962 |
Copyright terms: Public domain | W3C validator |