ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco GIF version

Theorem sbco 2019
Description: A composition law for substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbco ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)

Proof of Theorem sbco
StepHypRef Expression
1 equsb2 1832 . . 3 [𝑦 / 𝑥]𝑦 = 𝑥
2 sbequ12 1817 . . . . 5 (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑))
32bicomd 141 . . . 4 (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑𝜑))
43sbimi 1810 . . 3 ([𝑦 / 𝑥]𝑦 = 𝑥 → [𝑦 / 𝑥]([𝑥 / 𝑦]𝜑𝜑))
51, 4ax-mp 5 . 2 [𝑦 / 𝑥]([𝑥 / 𝑦]𝜑𝜑)
6 sbbi 2010 . 2 ([𝑦 / 𝑥]([𝑥 / 𝑦]𝜑𝜑) ↔ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑))
75, 6mpbi 145 1 ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  [wsb 1808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809
This theorem is referenced by:  sbco3v  2020
  Copyright terms: Public domain W3C validator