ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco GIF version

Theorem sbco 1961
Description: A composition law for substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbco ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)

Proof of Theorem sbco
StepHypRef Expression
1 equsb2 1779 . . 3 [𝑦 / 𝑥]𝑦 = 𝑥
2 sbequ12 1764 . . . . 5 (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑))
32bicomd 140 . . . 4 (𝑦 = 𝑥 → ([𝑥 / 𝑦]𝜑𝜑))
43sbimi 1757 . . 3 ([𝑦 / 𝑥]𝑦 = 𝑥 → [𝑦 / 𝑥]([𝑥 / 𝑦]𝜑𝜑))
51, 4ax-mp 5 . 2 [𝑦 / 𝑥]([𝑥 / 𝑦]𝜑𝜑)
6 sbbi 1952 . 2 ([𝑦 / 𝑥]([𝑥 / 𝑦]𝜑𝜑) ↔ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑))
75, 6mpbi 144 1 ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 104  [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756
This theorem is referenced by:  sbco3v  1962
  Copyright terms: Public domain W3C validator