ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erth GIF version

Theorem erth 6545
Description: Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
erth.1 (𝜑𝑅 Er 𝑋)
erth.2 (𝜑𝐴𝑋)
Assertion
Ref Expression
erth (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))

Proof of Theorem erth
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 108 . . . . . . 7 ((𝜑𝐴𝑅𝐵) → 𝜑)
2 erth.1 . . . . . . . . 9 (𝜑𝑅 Er 𝑋)
32ersymb 6515 . . . . . . . 8 (𝜑 → (𝐴𝑅𝐵𝐵𝑅𝐴))
43biimpa 294 . . . . . . 7 ((𝜑𝐴𝑅𝐵) → 𝐵𝑅𝐴)
51, 4jca 304 . . . . . 6 ((𝜑𝐴𝑅𝐵) → (𝜑𝐵𝑅𝐴))
62ertr 6516 . . . . . . 7 (𝜑 → ((𝐵𝑅𝐴𝐴𝑅𝑥) → 𝐵𝑅𝑥))
76impl 378 . . . . . 6 (((𝜑𝐵𝑅𝐴) ∧ 𝐴𝑅𝑥) → 𝐵𝑅𝑥)
85, 7sylan 281 . . . . 5 (((𝜑𝐴𝑅𝐵) ∧ 𝐴𝑅𝑥) → 𝐵𝑅𝑥)
92ertr 6516 . . . . . 6 (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝑥) → 𝐴𝑅𝑥))
109impl 378 . . . . 5 (((𝜑𝐴𝑅𝐵) ∧ 𝐵𝑅𝑥) → 𝐴𝑅𝑥)
118, 10impbida 586 . . . 4 ((𝜑𝐴𝑅𝐵) → (𝐴𝑅𝑥𝐵𝑅𝑥))
12 vex 2729 . . . . 5 𝑥 ∈ V
13 erth.2 . . . . . 6 (𝜑𝐴𝑋)
1413adantr 274 . . . . 5 ((𝜑𝐴𝑅𝐵) → 𝐴𝑋)
15 elecg 6539 . . . . 5 ((𝑥 ∈ V ∧ 𝐴𝑋) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
1612, 14, 15sylancr 411 . . . 4 ((𝜑𝐴𝑅𝐵) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
17 errel 6510 . . . . . . 7 (𝑅 Er 𝑋 → Rel 𝑅)
182, 17syl 14 . . . . . 6 (𝜑 → Rel 𝑅)
19 brrelex2 4645 . . . . . 6 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
2018, 19sylan 281 . . . . 5 ((𝜑𝐴𝑅𝐵) → 𝐵 ∈ V)
21 elecg 6539 . . . . 5 ((𝑥 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
2212, 20, 21sylancr 411 . . . 4 ((𝜑𝐴𝑅𝐵) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
2311, 16, 223bitr4d 219 . . 3 ((𝜑𝐴𝑅𝐵) → (𝑥 ∈ [𝐴]𝑅𝑥 ∈ [𝐵]𝑅))
2423eqrdv 2163 . 2 ((𝜑𝐴𝑅𝐵) → [𝐴]𝑅 = [𝐵]𝑅)
252adantr 274 . . 3 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝑅 Er 𝑋)
262, 13erref 6521 . . . . . . 7 (𝜑𝐴𝑅𝐴)
2726adantr 274 . . . . . 6 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴𝑅𝐴)
2813adantr 274 . . . . . . 7 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴𝑋)
29 elecg 6539 . . . . . . 7 ((𝐴𝑋𝐴𝑋) → (𝐴 ∈ [𝐴]𝑅𝐴𝑅𝐴))
3028, 28, 29syl2anc 409 . . . . . 6 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → (𝐴 ∈ [𝐴]𝑅𝐴𝑅𝐴))
3127, 30mpbird 166 . . . . 5 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴 ∈ [𝐴]𝑅)
32 simpr 109 . . . . 5 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → [𝐴]𝑅 = [𝐵]𝑅)
3331, 32eleqtrd 2245 . . . 4 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴 ∈ [𝐵]𝑅)
3425, 32ereldm 6544 . . . . . 6 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → (𝐴𝑋𝐵𝑋))
3528, 34mpbid 146 . . . . 5 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐵𝑋)
36 elecg 6539 . . . . 5 ((𝐴𝑋𝐵𝑋) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
3728, 35, 36syl2anc 409 . . . 4 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
3833, 37mpbid 146 . . 3 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐵𝑅𝐴)
3925, 38ersym 6513 . 2 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴𝑅𝐵)
4024, 39impbida 586 1 (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  Vcvv 2726   class class class wbr 3982  Rel wrel 4609   Er wer 6498  [cec 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-er 6501  df-ec 6503
This theorem is referenced by:  erth2  6546  erthi  6547  qliftfun  6583  eroveu  6592  th3qlem1  6603  enqeceq  7300  enq0eceq  7378  nnnq0lem1  7387  enreceq  7677  prsrlem1  7683
  Copyright terms: Public domain W3C validator