ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erth GIF version

Theorem erth 6633
Description: Basic property of equivalence relations. Theorem 73 of [Suppes] p. 82. (Contributed by NM, 23-Jul-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
erth.1 (𝜑𝑅 Er 𝑋)
erth.2 (𝜑𝐴𝑋)
Assertion
Ref Expression
erth (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))

Proof of Theorem erth
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . . 7 ((𝜑𝐴𝑅𝐵) → 𝜑)
2 erth.1 . . . . . . . . 9 (𝜑𝑅 Er 𝑋)
32ersymb 6601 . . . . . . . 8 (𝜑 → (𝐴𝑅𝐵𝐵𝑅𝐴))
43biimpa 296 . . . . . . 7 ((𝜑𝐴𝑅𝐵) → 𝐵𝑅𝐴)
51, 4jca 306 . . . . . 6 ((𝜑𝐴𝑅𝐵) → (𝜑𝐵𝑅𝐴))
62ertr 6602 . . . . . . 7 (𝜑 → ((𝐵𝑅𝐴𝐴𝑅𝑥) → 𝐵𝑅𝑥))
76impl 380 . . . . . 6 (((𝜑𝐵𝑅𝐴) ∧ 𝐴𝑅𝑥) → 𝐵𝑅𝑥)
85, 7sylan 283 . . . . 5 (((𝜑𝐴𝑅𝐵) ∧ 𝐴𝑅𝑥) → 𝐵𝑅𝑥)
92ertr 6602 . . . . . 6 (𝜑 → ((𝐴𝑅𝐵𝐵𝑅𝑥) → 𝐴𝑅𝑥))
109impl 380 . . . . 5 (((𝜑𝐴𝑅𝐵) ∧ 𝐵𝑅𝑥) → 𝐴𝑅𝑥)
118, 10impbida 596 . . . 4 ((𝜑𝐴𝑅𝐵) → (𝐴𝑅𝑥𝐵𝑅𝑥))
12 vex 2763 . . . . 5 𝑥 ∈ V
13 erth.2 . . . . . 6 (𝜑𝐴𝑋)
1413adantr 276 . . . . 5 ((𝜑𝐴𝑅𝐵) → 𝐴𝑋)
15 elecg 6627 . . . . 5 ((𝑥 ∈ V ∧ 𝐴𝑋) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
1612, 14, 15sylancr 414 . . . 4 ((𝜑𝐴𝑅𝐵) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
17 errel 6596 . . . . . . 7 (𝑅 Er 𝑋 → Rel 𝑅)
182, 17syl 14 . . . . . 6 (𝜑 → Rel 𝑅)
19 brrelex2 4700 . . . . . 6 ((Rel 𝑅𝐴𝑅𝐵) → 𝐵 ∈ V)
2018, 19sylan 283 . . . . 5 ((𝜑𝐴𝑅𝐵) → 𝐵 ∈ V)
21 elecg 6627 . . . . 5 ((𝑥 ∈ V ∧ 𝐵 ∈ V) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
2212, 20, 21sylancr 414 . . . 4 ((𝜑𝐴𝑅𝐵) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
2311, 16, 223bitr4d 220 . . 3 ((𝜑𝐴𝑅𝐵) → (𝑥 ∈ [𝐴]𝑅𝑥 ∈ [𝐵]𝑅))
2423eqrdv 2191 . 2 ((𝜑𝐴𝑅𝐵) → [𝐴]𝑅 = [𝐵]𝑅)
252adantr 276 . . 3 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝑅 Er 𝑋)
262, 13erref 6607 . . . . . . 7 (𝜑𝐴𝑅𝐴)
2726adantr 276 . . . . . 6 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴𝑅𝐴)
2813adantr 276 . . . . . . 7 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴𝑋)
29 elecg 6627 . . . . . . 7 ((𝐴𝑋𝐴𝑋) → (𝐴 ∈ [𝐴]𝑅𝐴𝑅𝐴))
3028, 28, 29syl2anc 411 . . . . . 6 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → (𝐴 ∈ [𝐴]𝑅𝐴𝑅𝐴))
3127, 30mpbird 167 . . . . 5 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴 ∈ [𝐴]𝑅)
32 simpr 110 . . . . 5 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → [𝐴]𝑅 = [𝐵]𝑅)
3331, 32eleqtrd 2272 . . . 4 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴 ∈ [𝐵]𝑅)
3425, 32ereldm 6632 . . . . . 6 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → (𝐴𝑋𝐵𝑋))
3528, 34mpbid 147 . . . . 5 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐵𝑋)
36 elecg 6627 . . . . 5 ((𝐴𝑋𝐵𝑋) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
3728, 35, 36syl2anc 411 . . . 4 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → (𝐴 ∈ [𝐵]𝑅𝐵𝑅𝐴))
3833, 37mpbid 147 . . 3 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐵𝑅𝐴)
3925, 38ersym 6599 . 2 ((𝜑 ∧ [𝐴]𝑅 = [𝐵]𝑅) → 𝐴𝑅𝐵)
4024, 39impbida 596 1 (𝜑 → (𝐴𝑅𝐵 ↔ [𝐴]𝑅 = [𝐵]𝑅))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  Vcvv 2760   class class class wbr 4029  Rel wrel 4664   Er wer 6584  [cec 6585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-er 6587  df-ec 6589
This theorem is referenced by:  erth2  6634  erthi  6635  qliftfun  6671  eroveu  6680  th3qlem1  6691  enqeceq  7419  enq0eceq  7497  nnnq0lem1  7506  enreceq  7796  prsrlem1  7802  ercpbllemg  12913  eqg0el  13299  qusecsub  13401  zndvds  14137
  Copyright terms: Public domain W3C validator