| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1bi | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp1bi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | 2 | simp1d 1011 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: limord 4431 smores2 6361 smofvon2dm 6363 smofvon 6366 errel 6610 lincmb01cmp 10095 iccf1o 10096 elfznn0 10206 elfzouz 10243 ef01bndlem 11938 sin01bnd 11939 cos01bnd 11940 sin01gt0 11944 cos01gt0 11945 sin02gt0 11946 eulerthlema 12423 modprm0 12448 gzcn 12566 subgbas 13384 subgrcl 13385 rngabl 13567 srgcmn 13598 ringgrp 13633 subrngrcl 13835 lmodgrp 13926 coseq00topi 15155 coseq0negpitopi 15156 cosq34lt1 15170 cos11 15173 nconstwlpolemgt0 15795 |
| Copyright terms: Public domain | W3C validator |