| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1bi | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp1bi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | 2 | simp1d 1011 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: limord 4431 smores2 6361 smofvon2dm 6363 smofvon 6366 errel 6610 lincmb01cmp 10097 iccf1o 10098 elfznn0 10208 elfzouz 10245 ef01bndlem 11940 sin01bnd 11941 cos01bnd 11942 sin01gt0 11946 cos01gt0 11947 sin02gt0 11948 eulerthlema 12425 modprm0 12450 gzcn 12568 subgbas 13386 subgrcl 13387 rngabl 13569 srgcmn 13600 ringgrp 13635 subrngrcl 13837 lmodgrp 13928 coseq00topi 15179 coseq0negpitopi 15180 cosq34lt1 15194 cos11 15197 nconstwlpolemgt0 15821 |
| Copyright terms: Public domain | W3C validator |