ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp1bi GIF version

Theorem simp1bi 979
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
3simp1bi.1 (𝜑 ↔ (𝜓𝜒𝜃))
Assertion
Ref Expression
simp1bi (𝜑𝜓)

Proof of Theorem simp1bi
StepHypRef Expression
1 3simp1bi.1 . . 3 (𝜑 ↔ (𝜓𝜒𝜃))
21biimpi 119 . 2 (𝜑 → (𝜓𝜒𝜃))
32simp1d 976 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 945
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105
This theorem depends on definitions:  df-bi 116  df-3an 947
This theorem is referenced by:  limord  4277  smores2  6145  smofvon2dm  6147  smofvon  6150  errel  6392  lincmb01cmp  9679  iccf1o  9680  elfznn0  9787  elfzouz  9821  ef01bndlem  11314  sin01bnd  11315  cos01bnd  11316  sin01gt0  11319  cos01gt0  11320  sin02gt0  11321
  Copyright terms: Public domain W3C validator