Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp1bi | GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp1bi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | 1 | biimpi 119 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | 2 | simp1d 999 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: limord 4373 smores2 6262 smofvon2dm 6264 smofvon 6267 errel 6510 lincmb01cmp 9939 iccf1o 9940 elfznn0 10049 elfzouz 10086 ef01bndlem 11697 sin01bnd 11698 cos01bnd 11699 sin01gt0 11702 cos01gt0 11703 sin02gt0 11704 eulerthlema 12162 modprm0 12186 gzcn 12302 coseq00topi 13396 coseq0negpitopi 13397 cosq34lt1 13411 cos11 13414 nconstwlpolemgt0 13942 |
Copyright terms: Public domain | W3C validator |