ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp1bi GIF version

Theorem simp1bi 1036
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
3simp1bi.1 (𝜑 ↔ (𝜓𝜒𝜃))
Assertion
Ref Expression
simp1bi (𝜑𝜓)

Proof of Theorem simp1bi
StepHypRef Expression
1 3simp1bi.1 . . 3 (𝜑 ↔ (𝜓𝜒𝜃))
21biimpi 120 . 2 (𝜑 → (𝜓𝜒𝜃))
32simp1d 1033 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  limord  4486  smores2  6446  smofvon2dm  6448  smofvon  6451  errel  6697  lincmb01cmp  10207  iccf1o  10208  elfznn0  10318  elfzouz  10355  ef01bndlem  12275  sin01bnd  12276  cos01bnd  12277  sin01gt0  12281  cos01gt0  12282  sin02gt0  12283  eulerthlema  12760  modprm0  12785  gzcn  12903  subgbas  13723  subgrcl  13724  rngabl  13906  srgcmn  13937  ringgrp  13972  subrngrcl  14175  lmodgrp  14266  coseq00topi  15517  coseq0negpitopi  15518  cosq34lt1  15532  cos11  15535  nconstwlpolemgt0  16462
  Copyright terms: Public domain W3C validator