Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp1bi | GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp1bi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | 1 | biimpi 119 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | 2 | simp1d 1004 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∧ w3a 973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: limord 4380 smores2 6273 smofvon2dm 6275 smofvon 6278 errel 6522 lincmb01cmp 9960 iccf1o 9961 elfznn0 10070 elfzouz 10107 ef01bndlem 11719 sin01bnd 11720 cos01bnd 11721 sin01gt0 11724 cos01gt0 11725 sin02gt0 11726 eulerthlema 12184 modprm0 12208 gzcn 12324 coseq00topi 13550 coseq0negpitopi 13551 cosq34lt1 13565 cos11 13568 nconstwlpolemgt0 14095 |
Copyright terms: Public domain | W3C validator |