| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1bi | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp1bi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | 2 | simp1d 1011 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: limord 4430 smores2 6352 smofvon2dm 6354 smofvon 6357 errel 6601 lincmb01cmp 10078 iccf1o 10079 elfznn0 10189 elfzouz 10226 ef01bndlem 11921 sin01bnd 11922 cos01bnd 11923 sin01gt0 11927 cos01gt0 11928 sin02gt0 11929 eulerthlema 12398 modprm0 12423 gzcn 12541 subgbas 13308 subgrcl 13309 rngabl 13491 srgcmn 13522 ringgrp 13557 subrngrcl 13759 lmodgrp 13850 coseq00topi 15071 coseq0negpitopi 15072 cosq34lt1 15086 cos11 15089 nconstwlpolemgt0 15708 |
| Copyright terms: Public domain | W3C validator |