ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp1bi GIF version

Theorem simp1bi 1015
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
3simp1bi.1 (𝜑 ↔ (𝜓𝜒𝜃))
Assertion
Ref Expression
simp1bi (𝜑𝜓)

Proof of Theorem simp1bi
StepHypRef Expression
1 3simp1bi.1 . . 3 (𝜑 ↔ (𝜓𝜒𝜃))
21biimpi 120 . 2 (𝜑 → (𝜓𝜒𝜃))
32simp1d 1012 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  limord  4447  smores2  6390  smofvon2dm  6392  smofvon  6395  errel  6639  lincmb01cmp  10138  iccf1o  10139  elfznn0  10249  elfzouz  10286  ef01bndlem  12117  sin01bnd  12118  cos01bnd  12119  sin01gt0  12123  cos01gt0  12124  sin02gt0  12125  eulerthlema  12602  modprm0  12627  gzcn  12745  subgbas  13564  subgrcl  13565  rngabl  13747  srgcmn  13778  ringgrp  13813  subrngrcl  14015  lmodgrp  14106  coseq00topi  15357  coseq0negpitopi  15358  cosq34lt1  15372  cos11  15375  nconstwlpolemgt0  16118
  Copyright terms: Public domain W3C validator