| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1bi | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp1bi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | 2 | simp1d 1033 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: limord 4486 smores2 6446 smofvon2dm 6448 smofvon 6451 errel 6697 lincmb01cmp 10207 iccf1o 10208 elfznn0 10318 elfzouz 10355 ef01bndlem 12275 sin01bnd 12276 cos01bnd 12277 sin01gt0 12281 cos01gt0 12282 sin02gt0 12283 eulerthlema 12760 modprm0 12785 gzcn 12903 subgbas 13723 subgrcl 13724 rngabl 13906 srgcmn 13937 ringgrp 13972 subrngrcl 14175 lmodgrp 14266 coseq00topi 15517 coseq0negpitopi 15518 cosq34lt1 15532 cos11 15535 nconstwlpolemgt0 16462 |
| Copyright terms: Public domain | W3C validator |