ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp1bi GIF version

Theorem simp1bi 1014
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
3simp1bi.1 (𝜑 ↔ (𝜓𝜒𝜃))
Assertion
Ref Expression
simp1bi (𝜑𝜓)

Proof of Theorem simp1bi
StepHypRef Expression
1 3simp1bi.1 . . 3 (𝜑 ↔ (𝜓𝜒𝜃))
21biimpi 120 . 2 (𝜑 → (𝜓𝜒𝜃))
32simp1d 1011 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  limord  4431  smores2  6361  smofvon2dm  6363  smofvon  6366  errel  6610  lincmb01cmp  10097  iccf1o  10098  elfznn0  10208  elfzouz  10245  ef01bndlem  11940  sin01bnd  11941  cos01bnd  11942  sin01gt0  11946  cos01gt0  11947  sin02gt0  11948  eulerthlema  12425  modprm0  12450  gzcn  12568  subgbas  13386  subgrcl  13387  rngabl  13569  srgcmn  13600  ringgrp  13635  subrngrcl  13837  lmodgrp  13928  coseq00topi  15179  coseq0negpitopi  15180  cosq34lt1  15194  cos11  15197  nconstwlpolemgt0  15821
  Copyright terms: Public domain W3C validator