ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp1bi GIF version

Theorem simp1bi 1007
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
3simp1bi.1 (𝜑 ↔ (𝜓𝜒𝜃))
Assertion
Ref Expression
simp1bi (𝜑𝜓)

Proof of Theorem simp1bi
StepHypRef Expression
1 3simp1bi.1 . . 3 (𝜑 ↔ (𝜓𝜒𝜃))
21biimpi 119 . 2 (𝜑 → (𝜓𝜒𝜃))
32simp1d 1004 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  limord  4380  smores2  6273  smofvon2dm  6275  smofvon  6278  errel  6522  lincmb01cmp  9960  iccf1o  9961  elfznn0  10070  elfzouz  10107  ef01bndlem  11719  sin01bnd  11720  cos01bnd  11721  sin01gt0  11724  cos01gt0  11725  sin02gt0  11726  eulerthlema  12184  modprm0  12208  gzcn  12324  coseq00topi  13550  coseq0negpitopi  13551  cosq34lt1  13565  cos11  13568  nconstwlpolemgt0  14095
  Copyright terms: Public domain W3C validator