Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp1bi | GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp1bi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | 2 | simp1d 1009 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: limord 4389 smores2 6285 smofvon2dm 6287 smofvon 6290 errel 6534 lincmb01cmp 9974 iccf1o 9975 elfznn0 10084 elfzouz 10121 ef01bndlem 11732 sin01bnd 11733 cos01bnd 11734 sin01gt0 11737 cos01gt0 11738 sin02gt0 11739 eulerthlema 12197 modprm0 12221 gzcn 12337 srgcmn 12955 ringgrp 12990 coseq00topi 13836 coseq0negpitopi 13837 cosq34lt1 13851 cos11 13854 nconstwlpolemgt0 14381 |
Copyright terms: Public domain | W3C validator |