| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1bi | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp1bi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | 2 | simp1d 1033 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 1002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: limord 4483 smores2 6430 smofvon2dm 6432 smofvon 6435 errel 6679 lincmb01cmp 10187 iccf1o 10188 elfznn0 10298 elfzouz 10335 ef01bndlem 12253 sin01bnd 12254 cos01bnd 12255 sin01gt0 12259 cos01gt0 12260 sin02gt0 12261 eulerthlema 12738 modprm0 12763 gzcn 12881 subgbas 13701 subgrcl 13702 rngabl 13884 srgcmn 13915 ringgrp 13950 subrngrcl 14152 lmodgrp 14243 coseq00topi 15494 coseq0negpitopi 15495 cosq34lt1 15509 cos11 15512 nconstwlpolemgt0 16363 |
| Copyright terms: Public domain | W3C validator |