ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp1bi GIF version

Theorem simp1bi 1002
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
3simp1bi.1 (𝜑 ↔ (𝜓𝜒𝜃))
Assertion
Ref Expression
simp1bi (𝜑𝜓)

Proof of Theorem simp1bi
StepHypRef Expression
1 3simp1bi.1 . . 3 (𝜑 ↔ (𝜓𝜒𝜃))
21biimpi 119 . 2 (𝜑 → (𝜓𝜒𝜃))
32simp1d 999 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  limord  4373  smores2  6262  smofvon2dm  6264  smofvon  6267  errel  6510  lincmb01cmp  9939  iccf1o  9940  elfznn0  10049  elfzouz  10086  ef01bndlem  11697  sin01bnd  11698  cos01bnd  11699  sin01gt0  11702  cos01gt0  11703  sin02gt0  11704  eulerthlema  12162  modprm0  12186  gzcn  12302  coseq00topi  13396  coseq0negpitopi  13397  cosq34lt1  13411  cos11  13414  nconstwlpolemgt0  13942
  Copyright terms: Public domain W3C validator