![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp1bi | GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp1bi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | 2 | simp1d 1011 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: limord 4426 smores2 6347 smofvon2dm 6349 smofvon 6352 errel 6596 lincmb01cmp 10069 iccf1o 10070 elfznn0 10180 elfzouz 10217 ef01bndlem 11899 sin01bnd 11900 cos01bnd 11901 sin01gt0 11905 cos01gt0 11906 sin02gt0 11907 eulerthlema 12368 modprm0 12392 gzcn 12510 subgbas 13248 subgrcl 13249 rngabl 13431 srgcmn 13462 ringgrp 13497 subrngrcl 13699 lmodgrp 13790 coseq00topi 14970 coseq0negpitopi 14971 cosq34lt1 14985 cos11 14988 nconstwlpolemgt0 15554 |
Copyright terms: Public domain | W3C validator |