| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp1bi | GIF version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| 3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simp1bi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 3 | 2 | simp1d 1012 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: limord 4447 smores2 6390 smofvon2dm 6392 smofvon 6395 errel 6639 lincmb01cmp 10138 iccf1o 10139 elfznn0 10249 elfzouz 10286 ef01bndlem 12117 sin01bnd 12118 cos01bnd 12119 sin01gt0 12123 cos01gt0 12124 sin02gt0 12125 eulerthlema 12602 modprm0 12627 gzcn 12745 subgbas 13564 subgrcl 13565 rngabl 13747 srgcmn 13778 ringgrp 13813 subrngrcl 14015 lmodgrp 14106 coseq00topi 15357 coseq0negpitopi 15358 cosq34lt1 15372 cos11 15375 nconstwlpolemgt0 16118 |
| Copyright terms: Public domain | W3C validator |