![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp1bi | GIF version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
3simp1bi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
simp1bi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1bi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
3 | 2 | simp1d 1011 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: limord 4427 smores2 6349 smofvon2dm 6351 smofvon 6354 errel 6598 lincmb01cmp 10072 iccf1o 10073 elfznn0 10183 elfzouz 10220 ef01bndlem 11902 sin01bnd 11903 cos01bnd 11904 sin01gt0 11908 cos01gt0 11909 sin02gt0 11910 eulerthlema 12371 modprm0 12395 gzcn 12513 subgbas 13251 subgrcl 13252 rngabl 13434 srgcmn 13465 ringgrp 13500 subrngrcl 13702 lmodgrp 13793 coseq00topi 15011 coseq0negpitopi 15012 cosq34lt1 15026 cos11 15029 nconstwlpolemgt0 15624 |
Copyright terms: Public domain | W3C validator |