![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ercl | GIF version |
Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ersym.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
ersym.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
Ref | Expression |
---|---|
ercl | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ersym.1 | . . . 4 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
2 | errel 6299 | . . . 4 ⊢ (𝑅 Er 𝑋 → Rel 𝑅) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → Rel 𝑅) |
4 | ersym.2 | . . 3 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
5 | releldm 4670 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
6 | 3, 4, 5 | syl2anc 403 | . 2 ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
7 | erdm 6300 | . . 3 ⊢ (𝑅 Er 𝑋 → dom 𝑅 = 𝑋) | |
8 | 1, 7 | syl 14 | . 2 ⊢ (𝜑 → dom 𝑅 = 𝑋) |
9 | 6, 8 | eleqtrd 2166 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1289 ∈ wcel 1438 class class class wbr 3845 dom cdm 4438 Rel wrel 4443 Er wer 6287 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-br 3846 df-opab 3900 df-xp 4444 df-rel 4445 df-dm 4448 df-er 6290 |
This theorem is referenced by: ercl2 6303 erthi 6336 qliftfun 6372 |
Copyright terms: Public domain | W3C validator |