ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercl GIF version

Theorem ercl 6600
Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersym.1 (𝜑𝑅 Er 𝑋)
ersym.2 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
ercl (𝜑𝐴𝑋)

Proof of Theorem ercl
StepHypRef Expression
1 ersym.1 . . . 4 (𝜑𝑅 Er 𝑋)
2 errel 6598 . . . 4 (𝑅 Er 𝑋 → Rel 𝑅)
31, 2syl 14 . . 3 (𝜑 → Rel 𝑅)
4 ersym.2 . . 3 (𝜑𝐴𝑅𝐵)
5 releldm 4898 . . 3 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
63, 4, 5syl2anc 411 . 2 (𝜑𝐴 ∈ dom 𝑅)
7 erdm 6599 . . 3 (𝑅 Er 𝑋 → dom 𝑅 = 𝑋)
81, 7syl 14 . 2 (𝜑 → dom 𝑅 = 𝑋)
96, 8eleqtrd 2272 1 (𝜑𝐴𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164   class class class wbr 4030  dom cdm 4660  Rel wrel 4665   Er wer 6586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-dm 4670  df-er 6589
This theorem is referenced by:  ercl2  6602  erthi  6637  qliftfun  6673  qusgrp2  13186
  Copyright terms: Public domain W3C validator