![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ercl | GIF version |
Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ersym.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
ersym.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
Ref | Expression |
---|---|
ercl | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ersym.1 | . . . 4 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
2 | errel 6598 | . . . 4 ⊢ (𝑅 Er 𝑋 → Rel 𝑅) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → Rel 𝑅) |
4 | ersym.2 | . . 3 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
5 | releldm 4898 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
6 | 3, 4, 5 | syl2anc 411 | . 2 ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
7 | erdm 6599 | . . 3 ⊢ (𝑅 Er 𝑋 → dom 𝑅 = 𝑋) | |
8 | 1, 7 | syl 14 | . 2 ⊢ (𝜑 → dom 𝑅 = 𝑋) |
9 | 6, 8 | eleqtrd 2272 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 dom cdm 4660 Rel wrel 4665 Er wer 6586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-rel 4667 df-dm 4670 df-er 6589 |
This theorem is referenced by: ercl2 6602 erthi 6637 qliftfun 6673 qusgrp2 13186 |
Copyright terms: Public domain | W3C validator |