| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ercl | GIF version | ||
| Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| ersym.1 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| ersym.2 | ⊢ (𝜑 → 𝐴𝑅𝐵) |
| Ref | Expression |
|---|---|
| ercl | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ersym.1 | . . . 4 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 2 | errel 6687 | . . . 4 ⊢ (𝑅 Er 𝑋 → Rel 𝑅) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → Rel 𝑅) |
| 4 | ersym.2 | . . 3 ⊢ (𝜑 → 𝐴𝑅𝐵) | |
| 5 | releldm 4958 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅) | |
| 6 | 3, 4, 5 | syl2anc 411 | . 2 ⊢ (𝜑 → 𝐴 ∈ dom 𝑅) |
| 7 | erdm 6688 | . . 3 ⊢ (𝑅 Er 𝑋 → dom 𝑅 = 𝑋) | |
| 8 | 1, 7 | syl 14 | . 2 ⊢ (𝜑 → dom 𝑅 = 𝑋) |
| 9 | 6, 8 | eleqtrd 2308 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 class class class wbr 4082 dom cdm 4718 Rel wrel 4723 Er wer 6675 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-dm 4728 df-er 6678 |
| This theorem is referenced by: ercl2 6691 erthi 6726 qliftfun 6762 qusgrp2 13645 |
| Copyright terms: Public domain | W3C validator |