ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercl GIF version

Theorem ercl 6548
Description: Elementhood in the field of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ersym.1 (𝜑𝑅 Er 𝑋)
ersym.2 (𝜑𝐴𝑅𝐵)
Assertion
Ref Expression
ercl (𝜑𝐴𝑋)

Proof of Theorem ercl
StepHypRef Expression
1 ersym.1 . . . 4 (𝜑𝑅 Er 𝑋)
2 errel 6546 . . . 4 (𝑅 Er 𝑋 → Rel 𝑅)
31, 2syl 14 . . 3 (𝜑 → Rel 𝑅)
4 ersym.2 . . 3 (𝜑𝐴𝑅𝐵)
5 releldm 4864 . . 3 ((Rel 𝑅𝐴𝑅𝐵) → 𝐴 ∈ dom 𝑅)
63, 4, 5syl2anc 411 . 2 (𝜑𝐴 ∈ dom 𝑅)
7 erdm 6547 . . 3 (𝑅 Er 𝑋 → dom 𝑅 = 𝑋)
81, 7syl 14 . 2 (𝜑 → dom 𝑅 = 𝑋)
96, 8eleqtrd 2256 1 (𝜑𝐴𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148   class class class wbr 4005  dom cdm 4628  Rel wrel 4633   Er wer 6534
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-dm 4638  df-er 6537
This theorem is referenced by:  ercl2  6550  erthi  6583  qliftfun  6619
  Copyright terms: Public domain W3C validator