ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erssxp GIF version

Theorem erssxp 6666
Description: An equivalence relation is a subset of the cartesian product of the field. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erssxp (𝑅 Er 𝐴𝑅 ⊆ (𝐴 × 𝐴))

Proof of Theorem erssxp
StepHypRef Expression
1 errel 6652 . . 3 (𝑅 Er 𝐴 → Rel 𝑅)
2 relssdmrn 5222 . . 3 (Rel 𝑅𝑅 ⊆ (dom 𝑅 × ran 𝑅))
31, 2syl 14 . 2 (𝑅 Er 𝐴𝑅 ⊆ (dom 𝑅 × ran 𝑅))
4 erdm 6653 . . 3 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
5 errn 6665 . . 3 (𝑅 Er 𝐴 → ran 𝑅 = 𝐴)
64, 5xpeq12d 4718 . 2 (𝑅 Er 𝐴 → (dom 𝑅 × ran 𝑅) = (𝐴 × 𝐴))
73, 6sseqtrd 3239 1 (𝑅 Er 𝐴𝑅 ⊆ (𝐴 × 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3174   × cxp 4691  dom cdm 4693  ran crn 4694  Rel wrel 4698   Er wer 6640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-dm 4703  df-rn 4704  df-er 6643
This theorem is referenced by:  erex  6667  riinerm  6718
  Copyright terms: Public domain W3C validator