| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > erssxp | GIF version | ||
| Description: An equivalence relation is a subset of the cartesian product of the field. (Contributed by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| erssxp | ⊢ (𝑅 Er 𝐴 → 𝑅 ⊆ (𝐴 × 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | errel 6652 | . . 3 ⊢ (𝑅 Er 𝐴 → Rel 𝑅) | |
| 2 | relssdmrn 5222 | . . 3 ⊢ (Rel 𝑅 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝑅 Er 𝐴 → 𝑅 ⊆ (dom 𝑅 × ran 𝑅)) |
| 4 | erdm 6653 | . . 3 ⊢ (𝑅 Er 𝐴 → dom 𝑅 = 𝐴) | |
| 5 | errn 6665 | . . 3 ⊢ (𝑅 Er 𝐴 → ran 𝑅 = 𝐴) | |
| 6 | 4, 5 | xpeq12d 4718 | . 2 ⊢ (𝑅 Er 𝐴 → (dom 𝑅 × ran 𝑅) = (𝐴 × 𝐴)) |
| 7 | 3, 6 | sseqtrd 3239 | 1 ⊢ (𝑅 Er 𝐴 → 𝑅 ⊆ (𝐴 × 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3174 × cxp 4691 dom cdm 4693 ran crn 4694 Rel wrel 4698 Er wer 6640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 df-cnv 4701 df-dm 4703 df-rn 4704 df-er 6643 |
| This theorem is referenced by: erex 6667 riinerm 6718 |
| Copyright terms: Public domain | W3C validator |