| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eunex | GIF version | ||
| Description: Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by Jim Kingdon, 29-Dec-2018.) |
| Ref | Expression |
|---|---|
| eunex | ⊢ (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1554 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | eu3 2104 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
| 3 | dtruex 4628 | . . . . 5 ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 | |
| 4 | nfa1 1567 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥(𝜑 → 𝑥 = 𝑦) | |
| 5 | sp 1537 | . . . . . . 7 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) | |
| 6 | 5 | con3d 634 | . . . . . 6 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → (¬ 𝑥 = 𝑦 → ¬ 𝜑)) |
| 7 | 4, 6 | eximd 1638 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → (∃𝑥 ¬ 𝑥 = 𝑦 → ∃𝑥 ¬ 𝜑)) |
| 8 | 3, 7 | mpi 15 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃𝑥 ¬ 𝜑) |
| 9 | 8 | exlimiv 1624 | . . 3 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃𝑥 ¬ 𝜑) |
| 10 | 9 | adantl 277 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) → ∃𝑥 ¬ 𝜑) |
| 11 | 2, 10 | sylbi 121 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∀wal 1373 = wceq 1375 ∃wex 1518 ∃!weu 2057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-setind 4606 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-v 2781 df-dif 3179 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |