| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eunex | GIF version | ||
| Description: Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by Jim Kingdon, 29-Dec-2018.) |
| Ref | Expression |
|---|---|
| eunex | ⊢ (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | eu3 2101 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
| 3 | dtruex 4611 | . . . . 5 ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 | |
| 4 | nfa1 1565 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥(𝜑 → 𝑥 = 𝑦) | |
| 5 | sp 1535 | . . . . . . 7 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) | |
| 6 | 5 | con3d 632 | . . . . . 6 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → (¬ 𝑥 = 𝑦 → ¬ 𝜑)) |
| 7 | 4, 6 | eximd 1636 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → (∃𝑥 ¬ 𝑥 = 𝑦 → ∃𝑥 ¬ 𝜑)) |
| 8 | 3, 7 | mpi 15 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃𝑥 ¬ 𝜑) |
| 9 | 8 | exlimiv 1622 | . . 3 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃𝑥 ¬ 𝜑) |
| 10 | 9 | adantl 277 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) → ∃𝑥 ¬ 𝜑) |
| 11 | 2, 10 | sylbi 121 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∀wal 1371 = wceq 1373 ∃wex 1516 ∃!weu 2055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-setind 4589 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-v 2775 df-dif 3169 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |