Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eunex | GIF version |
Description: Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by Jim Kingdon, 29-Dec-2018.) |
Ref | Expression |
---|---|
eunex | ⊢ (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | eu3 2065 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
3 | dtruex 4543 | . . . . 5 ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 | |
4 | nfa1 1534 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥(𝜑 → 𝑥 = 𝑦) | |
5 | sp 1504 | . . . . . . 7 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) | |
6 | 5 | con3d 626 | . . . . . 6 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → (¬ 𝑥 = 𝑦 → ¬ 𝜑)) |
7 | 4, 6 | eximd 1605 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → (∃𝑥 ¬ 𝑥 = 𝑦 → ∃𝑥 ¬ 𝜑)) |
8 | 3, 7 | mpi 15 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃𝑥 ¬ 𝜑) |
9 | 8 | exlimiv 1591 | . . 3 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃𝑥 ¬ 𝜑) |
10 | 9 | adantl 275 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) → ∃𝑥 ¬ 𝜑) |
11 | 2, 10 | sylbi 120 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∀wal 1346 = wceq 1348 ∃wex 1485 ∃!weu 2019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |