ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eunex GIF version

Theorem eunex 4538
Description: Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by Jim Kingdon, 29-Dec-2018.)
Assertion
Ref Expression
eunex (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑)

Proof of Theorem eunex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1516 . . 3 𝑦𝜑
21eu3 2060 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
3 dtruex 4536 . . . . 5 𝑥 ¬ 𝑥 = 𝑦
4 nfa1 1529 . . . . . 6 𝑥𝑥(𝜑𝑥 = 𝑦)
5 sp 1499 . . . . . . 7 (∀𝑥(𝜑𝑥 = 𝑦) → (𝜑𝑥 = 𝑦))
65con3d 621 . . . . . 6 (∀𝑥(𝜑𝑥 = 𝑦) → (¬ 𝑥 = 𝑦 → ¬ 𝜑))
74, 6eximd 1600 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) → (∃𝑥 ¬ 𝑥 = 𝑦 → ∃𝑥 ¬ 𝜑))
83, 7mpi 15 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → ∃𝑥 ¬ 𝜑)
98exlimiv 1586 . . 3 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃𝑥 ¬ 𝜑)
109adantl 275 . 2 ((∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)) → ∃𝑥 ¬ 𝜑)
112, 10sylbi 120 1 (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wal 1341   = wceq 1343  wex 1480  ∃!weu 2014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator