| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eunex | GIF version | ||
| Description: Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by Jim Kingdon, 29-Dec-2018.) | 
| Ref | Expression | 
|---|---|
| eunex | ⊢ (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1542 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | eu3 2091 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | 
| 3 | dtruex 4595 | . . . . 5 ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 | |
| 4 | nfa1 1555 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑥(𝜑 → 𝑥 = 𝑦) | |
| 5 | sp 1525 | . . . . . . 7 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) | |
| 6 | 5 | con3d 632 | . . . . . 6 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → (¬ 𝑥 = 𝑦 → ¬ 𝜑)) | 
| 7 | 4, 6 | eximd 1626 | . . . . 5 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → (∃𝑥 ¬ 𝑥 = 𝑦 → ∃𝑥 ¬ 𝜑)) | 
| 8 | 3, 7 | mpi 15 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃𝑥 ¬ 𝜑) | 
| 9 | 8 | exlimiv 1612 | . . 3 ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃𝑥 ¬ 𝜑) | 
| 10 | 9 | adantl 277 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) → ∃𝑥 ¬ 𝜑) | 
| 11 | 2, 10 | sylbi 121 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∀wal 1362 = wceq 1364 ∃wex 1506 ∃!weu 2045 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |