Proof of Theorem spc2ed
Step | Hyp | Ref
| Expression |
1 | | elisset 2744 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
2 | | elisset 2744 |
. . . 4
⊢ (𝐵 ∈ 𝑊 → ∃𝑦 𝑦 = 𝐵) |
3 | 1, 2 | anim12i 336 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) |
4 | | eeanv 1925 |
. . 3
⊢
(∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ↔ (∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) |
5 | 3, 4 | sylibr 133 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) |
6 | | nfv 1521 |
. . . . 5
⊢
Ⅎ𝑥𝜑 |
7 | | spc2ed.x |
. . . . 5
⊢
Ⅎ𝑥𝜒 |
8 | 6, 7 | nfan 1558 |
. . . 4
⊢
Ⅎ𝑥(𝜑 ∧ 𝜒) |
9 | | nfv 1521 |
. . . . . 6
⊢
Ⅎ𝑦𝜑 |
10 | | spc2ed.y |
. . . . . 6
⊢
Ⅎ𝑦𝜒 |
11 | 9, 10 | nfan 1558 |
. . . . 5
⊢
Ⅎ𝑦(𝜑 ∧ 𝜒) |
12 | | anass 399 |
. . . . . . . 8
⊢ (((𝜒 ∧ 𝜑) ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) ↔ (𝜒 ∧ (𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)))) |
13 | | ancom 264 |
. . . . . . . . 9
⊢ ((𝜒 ∧ 𝜑) ↔ (𝜑 ∧ 𝜒)) |
14 | 13 | anbi1i 455 |
. . . . . . . 8
⊢ (((𝜒 ∧ 𝜑) ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵))) |
15 | 12, 14 | bitr3i 185 |
. . . . . . 7
⊢ ((𝜒 ∧ (𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵))) ↔ ((𝜑 ∧ 𝜒) ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵))) |
16 | | spc2ed.1 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) |
17 | 16 | biimparc 297 |
. . . . . . 7
⊢ ((𝜒 ∧ (𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵))) → 𝜓) |
18 | 15, 17 | sylbir 134 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜒) ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝜓) |
19 | 18 | ex 114 |
. . . . 5
⊢ ((𝜑 ∧ 𝜒) → ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝜓)) |
20 | 11, 19 | eximd 1605 |
. . . 4
⊢ ((𝜑 ∧ 𝜒) → (∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑦𝜓)) |
21 | 8, 20 | eximd 1605 |
. . 3
⊢ ((𝜑 ∧ 𝜒) → (∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑥∃𝑦𝜓)) |
22 | 21 | impancom 258 |
. 2
⊢ ((𝜑 ∧ ∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜒 → ∃𝑥∃𝑦𝜓)) |
23 | 5, 22 | sylan2 284 |
1
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → (𝜒 → ∃𝑥∃𝑦𝜓)) |