![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssopab2 | GIF version |
Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 19-May-2013.) |
Ref | Expression |
---|---|
ssopab2 | ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1552 | . . . 4 ⊢ Ⅎ𝑥∀𝑥∀𝑦(𝜑 → 𝜓) | |
2 | nfa1 1552 | . . . . . 6 ⊢ Ⅎ𝑦∀𝑦(𝜑 → 𝜓) | |
3 | sp 1522 | . . . . . . 7 ⊢ (∀𝑦(𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
4 | 3 | anim2d 337 | . . . . . 6 ⊢ (∀𝑦(𝜑 → 𝜓) → ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓))) |
5 | 2, 4 | eximd 1623 | . . . . 5 ⊢ (∀𝑦(𝜑 → 𝜓) → (∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓))) |
6 | 5 | sps 1548 | . . . 4 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓))) |
7 | 1, 6 | eximd 1623 | . . 3 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓))) |
8 | 7 | ss2abdv 3252 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} ⊆ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)}) |
9 | df-opab 4091 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
10 | df-opab 4091 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
11 | 8, 9, 10 | 3sstr4g 3222 | 1 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 = wceq 1364 ∃wex 1503 {cab 2179 ⊆ wss 3153 〈cop 3621 {copab 4089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-in 3159 df-ss 3166 df-opab 4091 |
This theorem is referenced by: ssopab2b 4307 ssopab2i 4308 ssopab2dv 4309 |
Copyright terms: Public domain | W3C validator |