ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssopab2 GIF version

Theorem ssopab2 4260
Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 19-May-2013.)
Assertion
Ref Expression
ssopab2 (∀𝑥𝑦(𝜑𝜓) → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓})

Proof of Theorem ssopab2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfa1 1534 . . . 4 𝑥𝑥𝑦(𝜑𝜓)
2 nfa1 1534 . . . . . 6 𝑦𝑦(𝜑𝜓)
3 sp 1504 . . . . . . 7 (∀𝑦(𝜑𝜓) → (𝜑𝜓))
43anim2d 335 . . . . . 6 (∀𝑦(𝜑𝜓) → ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
52, 4eximd 1605 . . . . 5 (∀𝑦(𝜑𝜓) → (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
65sps 1530 . . . 4 (∀𝑥𝑦(𝜑𝜓) → (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
71, 6eximd 1605 . . 3 (∀𝑥𝑦(𝜑𝜓) → (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)))
87ss2abdv 3220 . 2 (∀𝑥𝑦(𝜑𝜓) → {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ⊆ {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)})
9 df-opab 4051 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
10 df-opab 4051 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜓} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜓)}
118, 9, 103sstr4g 3190 1 (∀𝑥𝑦(𝜑𝜓) → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1346   = wceq 1348  wex 1485  {cab 2156  wss 3121  cop 3586  {copab 4049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-in 3127  df-ss 3134  df-opab 4051
This theorem is referenced by:  ssopab2b  4261  ssopab2i  4262  ssopab2dv  4263
  Copyright terms: Public domain W3C validator