Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssopab2 | GIF version |
Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 19-May-2013.) |
Ref | Expression |
---|---|
ssopab2 | ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1534 | . . . 4 ⊢ Ⅎ𝑥∀𝑥∀𝑦(𝜑 → 𝜓) | |
2 | nfa1 1534 | . . . . . 6 ⊢ Ⅎ𝑦∀𝑦(𝜑 → 𝜓) | |
3 | sp 1504 | . . . . . . 7 ⊢ (∀𝑦(𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
4 | 3 | anim2d 335 | . . . . . 6 ⊢ (∀𝑦(𝜑 → 𝜓) → ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓))) |
5 | 2, 4 | eximd 1605 | . . . . 5 ⊢ (∀𝑦(𝜑 → 𝜓) → (∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓))) |
6 | 5 | sps 1530 | . . . 4 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓))) |
7 | 1, 6 | eximd 1605 | . . 3 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓))) |
8 | 7 | ss2abdv 3220 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} ⊆ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)}) |
9 | df-opab 4049 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
10 | df-opab 4049 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
11 | 8, 9, 10 | 3sstr4g 3190 | 1 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1346 = wceq 1348 ∃wex 1485 {cab 2156 ⊆ wss 3121 〈cop 3584 {copab 4047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-in 3127 df-ss 3134 df-opab 4049 |
This theorem is referenced by: ssopab2b 4259 ssopab2i 4260 ssopab2dv 4261 |
Copyright terms: Public domain | W3C validator |