| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssopab2 | GIF version | ||
| Description: Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 19-May-2013.) |
| Ref | Expression |
|---|---|
| ssopab2 | ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 1587 | . . . 4 ⊢ Ⅎ𝑥∀𝑥∀𝑦(𝜑 → 𝜓) | |
| 2 | nfa1 1587 | . . . . . 6 ⊢ Ⅎ𝑦∀𝑦(𝜑 → 𝜓) | |
| 3 | sp 1557 | . . . . . . 7 ⊢ (∀𝑦(𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 4 | 3 | anim2d 337 | . . . . . 6 ⊢ (∀𝑦(𝜑 → 𝜓) → ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓))) |
| 5 | 2, 4 | eximd 1658 | . . . . 5 ⊢ (∀𝑦(𝜑 → 𝜓) → (∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓))) |
| 6 | 5 | sps 1583 | . . . 4 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓))) |
| 7 | 1, 6 | eximd 1658 | . . 3 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) → ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓))) |
| 8 | 7 | ss2abdv 3297 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} ⊆ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)}) |
| 9 | df-opab 4145 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 10 | df-opab 4145 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝜓} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜓)} | |
| 11 | 8, 9, 10 | 3sstr4g 3267 | 1 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1393 = wceq 1395 ∃wex 1538 {cab 2215 ⊆ wss 3197 〈cop 3669 {copab 4143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-in 3203 df-ss 3210 df-opab 4145 |
| This theorem is referenced by: ssopab2b 4364 ssopab2i 4365 ssopab2dv 4366 |
| Copyright terms: Public domain | W3C validator |