| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimd | GIF version | ||
| Description: Deduction from Theorem 19.9 of [Margaris] p. 89. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof rewritten by Jim Kingdon, 18-Jun-2018.) |
| Ref | Expression |
|---|---|
| exlimd.1 | ⊢ Ⅎ𝑥𝜑 |
| exlimd.2 | ⊢ Ⅎ𝑥𝜒 |
| exlimd.3 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| exlimd | ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nfri 1533 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | exlimd.2 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
| 4 | 3 | nfri 1533 | . 2 ⊢ (𝜒 → ∀𝑥𝜒) |
| 5 | exlimd.3 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 6 | 2, 4, 5 | exlimdh 1610 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Ⅎwnf 1474 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-4 1524 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: exlimdd 1886 ceqsalg 2791 copsex2t 4278 alxfr 4496 mosubopt 4728 ovmpodf 6054 ovi3 6060 fsum2dlemstep 11599 fprod2dlemstep 11787 lss1d 13939 bj-exlimmp 15415 |
| Copyright terms: Public domain | W3C validator |