| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvmptdf | GIF version | ||
| Description: Alternate deduction version of fvmpt 5663, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| Ref | Expression |
|---|---|
| fvmptdf.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| fvmptdf.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) |
| fvmptdf.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐹‘𝐴) = 𝐵 → 𝜓)) |
| fvmptdf.4 | ⊢ Ⅎ𝑥𝐹 |
| fvmptdf.5 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| fvmptdf | ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | fvmptdf.4 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nfmpt1 4141 | . . . 4 ⊢ Ⅎ𝑥(𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 4 | 2, 3 | nfeq 2357 | . . 3 ⊢ Ⅎ𝑥 𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) |
| 5 | fvmptdf.5 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 6 | 4, 5 | nfim 1596 | . 2 ⊢ Ⅎ𝑥(𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → 𝜓) |
| 7 | fvmptdf.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
| 8 | elex 2784 | . . . 4 ⊢ (𝐴 ∈ 𝐷 → 𝐴 ∈ V) | |
| 9 | 7, 8 | syl 14 | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) |
| 10 | isset 2779 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
| 11 | 9, 10 | sylib 122 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 = 𝐴) |
| 12 | fveq1 5582 | . . 3 ⊢ (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → (𝐹‘𝐴) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴)) | |
| 13 | simpr 110 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 = 𝐴) | |
| 14 | 13 | fveq2d 5587 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴)) |
| 15 | 7 | adantr 276 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐴 ∈ 𝐷) |
| 16 | 13, 15 | eqeltrd 2283 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑥 ∈ 𝐷) |
| 17 | fvmptdf.2 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝑉) | |
| 18 | eqid 2206 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐷 ↦ 𝐵) = (𝑥 ∈ 𝐷 ↦ 𝐵) | |
| 19 | 18 | fvmpt2 5670 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐷 ∧ 𝐵 ∈ 𝑉) → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝑥) = 𝐵) |
| 20 | 16, 17, 19 | syl2anc 411 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝑥) = 𝐵) |
| 21 | 14, 20 | eqtr3d 2241 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) = 𝐵) |
| 22 | 21 | eqeq2d 2218 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐹‘𝐴) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) ↔ (𝐹‘𝐴) = 𝐵)) |
| 23 | fvmptdf.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐹‘𝐴) = 𝐵 → 𝜓)) | |
| 24 | 22, 23 | sylbid 150 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ((𝐹‘𝐴) = ((𝑥 ∈ 𝐷 ↦ 𝐵)‘𝐴) → 𝜓)) |
| 25 | 12, 24 | syl5 32 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → 𝜓)) |
| 26 | 1, 6, 11, 25 | exlimdd 1896 | 1 ⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐷 ↦ 𝐵) → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 Ⅎwnf 1484 ∃wex 1516 ∈ wcel 2177 Ⅎwnfc 2336 Vcvv 2773 ↦ cmpt 4109 ‘cfv 5276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-iota 5237 df-fun 5278 df-fv 5284 |
| This theorem is referenced by: fvmptdv 5675 |
| Copyright terms: Public domain | W3C validator |