ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.21v GIF version

Theorem 19.21v 1895
Description: Special case of Theorem 19.21 of [Margaris] p. 90. Notational convention: We sometimes suffix with "v" the label of a theorem eliminating a hypothesis such as (𝜑 → ∀𝑥𝜑) in 19.21 1605 via the use of distinct variable conditions combined with ax-17 1548. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a hypothesis to eliminate the need for the distinct variable condition; e.g., euf 2058 derived from df-eu 2056. The "f" stands for "not free in" which is less restrictive than "does not occur in". (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.21v (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem 19.21v
StepHypRef Expression
1 ax-17 1548 . 2 (𝜑 → ∀𝑥𝜑)
2119.21h 1579 1 (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-4 1532  ax-17 1548  ax-ial 1556  ax-i5r 1557
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm11.53  1918  cbval2  1944  cbvaldvaw  1953  sbhb  1967  2sb6  2011  sbcom2v  2012  2sb6rf  2017  2exsb  2036  moanim  2127  r3al  2549  ceqsralt  2798  rspc2gv  2888  euind  2959  reu2  2960  reuind  2977  unissb  3879  dfiin2g  3959  tfi  4628  asymref  5065  dff13  5827  mpo2eqb  6045
  Copyright terms: Public domain W3C validator