ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.21v GIF version

Theorem 19.21v 1919
Description: Special case of Theorem 19.21 of [Margaris] p. 90. Notational convention: We sometimes suffix with "v" the label of a theorem eliminating a hypothesis such as (𝜑 → ∀𝑥𝜑) in 19.21 1629 via the use of distinct variable conditions combined with ax-17 1572. Conversely, we sometimes suffix with "f" the label of a theorem introducing such a hypothesis to eliminate the need for the distinct variable condition; e.g., euf 2082 derived from df-eu 2080. The "f" stands for "not free in" which is less restrictive than "does not occur in". (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.21v (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem 19.21v
StepHypRef Expression
1 ax-17 1572 . 2 (𝜑 → ∀𝑥𝜑)
2119.21h 1603 1 (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-4 1556  ax-17 1572  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm11.53  1942  cbval2  1968  cbvaldvaw  1977  sbhb  1991  2sb6  2035  sbcom2v  2036  2sb6rf  2041  2exsb  2060  moanim  2152  r3al  2574  ceqsralt  2827  rspc2gv  2919  euind  2990  reu2  2991  reuind  3008  unissb  3917  dfiin2g  3997  tfi  4673  asymref  5113  dff13  5891  mpo2eqb  6113
  Copyright terms: Public domain W3C validator