Step | Hyp | Ref
| Expression |
1 | | nfv 1522 |
. . 3
⊢
Ⅎ𝑤 𝐺 ∈ Smgrp |
2 | | nfe1 1490 |
. . 3
⊢
Ⅎ𝑤∃𝑤 𝑤 ∈ 𝐵 |
3 | | nfv 1522 |
. . 3
⊢
Ⅎ𝑤∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) |
4 | 1, 2, 3 | nf3an 1560 |
. 2
⊢
Ⅎ𝑤(𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) |
5 | | nfv 1522 |
. 2
⊢
Ⅎ𝑤∃𝑢 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢) |
6 | | simp2 994 |
. 2
⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑤 𝑤 ∈ 𝐵) |
7 | | oveq2 5865 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → (𝑙 + 𝑥) = (𝑙 + 𝑤)) |
8 | 7 | eqeq1d 2180 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → ((𝑙 + 𝑥) = 𝑦 ↔ (𝑙 + 𝑤) = 𝑦)) |
9 | 8 | rexbidv 2472 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ↔ ∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦)) |
10 | | oveq1 5864 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → (𝑥 + 𝑟) = (𝑤 + 𝑟)) |
11 | 10 | eqeq1d 2180 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑤 + 𝑟) = 𝑦)) |
12 | 11 | rexbidv 2472 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → (∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦 ↔ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦)) |
13 | 9, 12 | anbi12d 471 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → ((∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) ↔ (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦))) |
14 | 13 | ralbidv 2471 |
. . . . . . 7
⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) ↔ ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦))) |
15 | 14 | rspcv 2831 |
. . . . . 6
⊢ (𝑤 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) → ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦))) |
16 | | eqeq2 2181 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑤 → ((𝑙 + 𝑤) = 𝑦 ↔ (𝑙 + 𝑤) = 𝑤)) |
17 | 16 | rexbidv 2472 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ↔ ∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑤)) |
18 | | eqeq2 2181 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑤 → ((𝑤 + 𝑟) = 𝑦 ↔ (𝑤 + 𝑟) = 𝑤)) |
19 | 18 | rexbidv 2472 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑤 → (∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦 ↔ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑤)) |
20 | 17, 19 | anbi12d 471 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → ((∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦) ↔ (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑤 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑤))) |
21 | 20 | rspcva 2833 |
. . . . . . . 8
⊢ ((𝑤 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦)) → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑤 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑤)) |
22 | | oveq1 5864 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑢 → (𝑙 + 𝑤) = (𝑢 + 𝑤)) |
23 | 22 | eqeq1d 2180 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝑢 → ((𝑙 + 𝑤) = 𝑤 ↔ (𝑢 + 𝑤) = 𝑤)) |
24 | 23 | cbvrexvw 2702 |
. . . . . . . . . 10
⊢
(∃𝑙 ∈
𝐵 (𝑙 + 𝑤) = 𝑤 ↔ ∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤) |
25 | 24 | biimpi 119 |
. . . . . . . . 9
⊢
(∃𝑙 ∈
𝐵 (𝑙 + 𝑤) = 𝑤 → ∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤) |
26 | 25 | adantr 274 |
. . . . . . . 8
⊢
((∃𝑙 ∈
𝐵 (𝑙 + 𝑤) = 𝑤 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑤) → ∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤) |
27 | 21, 26 | syl 14 |
. . . . . . 7
⊢ ((𝑤 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦)) → ∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤) |
28 | 27 | ex 114 |
. . . . . 6
⊢ (𝑤 ∈ 𝐵 → (∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦) → ∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤)) |
29 | 15, 28 | syldc 46 |
. . . . 5
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) → (𝑤 ∈ 𝐵 → ∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤)) |
30 | 29 | 3ad2ant3 1016 |
. . . 4
⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → (𝑤 ∈ 𝐵 → ∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤)) |
31 | 30 | imp 123 |
. . 3
⊢ (((𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) → ∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤) |
32 | | eqeq2 2181 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑎 → ((𝑙 + 𝑤) = 𝑦 ↔ (𝑙 + 𝑤) = 𝑎)) |
33 | 32 | rexbidv 2472 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑎 → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ↔ ∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑎)) |
34 | | eqeq2 2181 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑎 → ((𝑤 + 𝑟) = 𝑦 ↔ (𝑤 + 𝑟) = 𝑎)) |
35 | 34 | rexbidv 2472 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑎 → (∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦 ↔ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎)) |
36 | 33, 35 | anbi12d 471 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑎 → ((∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑦) ↔ (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑎 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎))) |
37 | 13, 36 | rspc2va 2849 |
. . . . . . . . . . . . 13
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑤) = 𝑎 ∧ ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎)) |
38 | 37 | simprd 113 |
. . . . . . . . . . . 12
⊢ (((𝑤 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎) |
39 | 38 | expcom 115 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) → ((𝑤 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎)) |
40 | 39 | 3ad2ant3 1016 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → ((𝑤 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎)) |
41 | 40 | impl 378 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑎 ∈ 𝐵) → ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎) |
42 | 41 | ad2ant2r 507 |
. . . . . . . 8
⊢
(((((𝐺 ∈ Smgrp
∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → ∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎) |
43 | | oveq2 5865 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑧 → (𝑤 + 𝑟) = (𝑤 + 𝑧)) |
44 | 43 | eqeq1d 2180 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑧 → ((𝑤 + 𝑟) = 𝑎 ↔ (𝑤 + 𝑧) = 𝑎)) |
45 | 44 | cbvrexvw 2702 |
. . . . . . . . . 10
⊢
(∃𝑟 ∈
𝐵 (𝑤 + 𝑟) = 𝑎 ↔ ∃𝑧 ∈ 𝐵 (𝑤 + 𝑧) = 𝑎) |
46 | | simpll1 1032 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → 𝐺 ∈ Smgrp) |
47 | 46 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈ Smgrp
∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ ((𝑢 + 𝑤) = 𝑤 ∧ 𝑧 ∈ 𝐵)) → 𝐺 ∈ Smgrp) |
48 | | simplr 526 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈ Smgrp
∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ ((𝑢 + 𝑤) = 𝑤 ∧ 𝑧 ∈ 𝐵)) → 𝑢 ∈ 𝐵) |
49 | | simpllr 530 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈ Smgrp
∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ ((𝑢 + 𝑤) = 𝑤 ∧ 𝑧 ∈ 𝐵)) → 𝑤 ∈ 𝐵) |
50 | | simprr 528 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈ Smgrp
∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ ((𝑢 + 𝑤) = 𝑤 ∧ 𝑧 ∈ 𝐵)) → 𝑧 ∈ 𝐵) |
51 | | dfgrp3.b |
. . . . . . . . . . . . . . . 16
⊢ 𝐵 = (Base‘𝐺) |
52 | | dfgrp3.p |
. . . . . . . . . . . . . . . 16
⊢ + =
(+g‘𝐺) |
53 | 51, 52 | sgrpass 12671 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ Smgrp ∧ (𝑢 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑢 + 𝑤) + 𝑧) = (𝑢 + (𝑤 + 𝑧))) |
54 | 47, 48, 49, 50, 53 | syl13anc 1236 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈ Smgrp
∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ ((𝑢 + 𝑤) = 𝑤 ∧ 𝑧 ∈ 𝐵)) → ((𝑢 + 𝑤) + 𝑧) = (𝑢 + (𝑤 + 𝑧))) |
55 | | simprl 527 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐺 ∈ Smgrp
∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ ((𝑢 + 𝑤) = 𝑤 ∧ 𝑧 ∈ 𝐵)) → (𝑢 + 𝑤) = 𝑤) |
56 | 55 | oveq1d 5872 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈ Smgrp
∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ ((𝑢 + 𝑤) = 𝑤 ∧ 𝑧 ∈ 𝐵)) → ((𝑢 + 𝑤) + 𝑧) = (𝑤 + 𝑧)) |
57 | 54, 56 | eqtr3d 2206 |
. . . . . . . . . . . . 13
⊢
(((((𝐺 ∈ Smgrp
∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ ((𝑢 + 𝑤) = 𝑤 ∧ 𝑧 ∈ 𝐵)) → (𝑢 + (𝑤 + 𝑧)) = (𝑤 + 𝑧)) |
58 | 57 | anassrs 398 |
. . . . . . . . . . . 12
⊢
((((((𝐺 ∈ Smgrp
∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢 + 𝑤) = 𝑤) ∧ 𝑧 ∈ 𝐵) → (𝑢 + (𝑤 + 𝑧)) = (𝑤 + 𝑧)) |
59 | | oveq2 5865 |
. . . . . . . . . . . . 13
⊢ ((𝑤 + 𝑧) = 𝑎 → (𝑢 + (𝑤 + 𝑧)) = (𝑢 + 𝑎)) |
60 | | id 19 |
. . . . . . . . . . . . 13
⊢ ((𝑤 + 𝑧) = 𝑎 → (𝑤 + 𝑧) = 𝑎) |
61 | 59, 60 | eqeq12d 2186 |
. . . . . . . . . . . 12
⊢ ((𝑤 + 𝑧) = 𝑎 → ((𝑢 + (𝑤 + 𝑧)) = (𝑤 + 𝑧) ↔ (𝑢 + 𝑎) = 𝑎)) |
62 | 58, 61 | syl5ibcom 154 |
. . . . . . . . . . 11
⊢
((((((𝐺 ∈ Smgrp
∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢 + 𝑤) = 𝑤) ∧ 𝑧 ∈ 𝐵) → ((𝑤 + 𝑧) = 𝑎 → (𝑢 + 𝑎) = 𝑎)) |
63 | 62 | rexlimdva 2588 |
. . . . . . . . . 10
⊢
(((((𝐺 ∈ Smgrp
∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢 + 𝑤) = 𝑤) → (∃𝑧 ∈ 𝐵 (𝑤 + 𝑧) = 𝑎 → (𝑢 + 𝑎) = 𝑎)) |
64 | 45, 63 | syl5bi 151 |
. . . . . . . . 9
⊢
(((((𝐺 ∈ Smgrp
∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑢 + 𝑤) = 𝑤) → (∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎 → (𝑢 + 𝑎) = 𝑎)) |
65 | 64 | adantrl 476 |
. . . . . . . 8
⊢
(((((𝐺 ∈ Smgrp
∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → (∃𝑟 ∈ 𝐵 (𝑤 + 𝑟) = 𝑎 → (𝑢 + 𝑎) = 𝑎)) |
66 | 42, 65 | mpd 13 |
. . . . . . 7
⊢
(((((𝐺 ∈ Smgrp
∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → (𝑢 + 𝑎) = 𝑎) |
67 | | oveq2 5865 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑎 → (𝑙 + 𝑥) = (𝑙 + 𝑎)) |
68 | 67 | eqeq1d 2180 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑎 → ((𝑙 + 𝑥) = 𝑦 ↔ (𝑙 + 𝑎) = 𝑦)) |
69 | 68 | rexbidv 2472 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ↔ ∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑦)) |
70 | | oveq1 5864 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = 𝑎 → (𝑥 + 𝑟) = (𝑎 + 𝑟)) |
71 | 70 | eqeq1d 2180 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 𝑎 → ((𝑥 + 𝑟) = 𝑦 ↔ (𝑎 + 𝑟) = 𝑦)) |
72 | 71 | rexbidv 2472 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑎 → (∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦 ↔ ∃𝑟 ∈ 𝐵 (𝑎 + 𝑟) = 𝑦)) |
73 | 69, 72 | anbi12d 471 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑎 → ((∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) ↔ (∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑎 + 𝑟) = 𝑦))) |
74 | | eqeq2 2181 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑢 → ((𝑙 + 𝑎) = 𝑦 ↔ (𝑙 + 𝑎) = 𝑢)) |
75 | 74 | rexbidv 2472 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑢 → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑦 ↔ ∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢)) |
76 | | eqeq2 2181 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑢 → ((𝑎 + 𝑟) = 𝑦 ↔ (𝑎 + 𝑟) = 𝑢)) |
77 | 76 | rexbidv 2472 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑢 → (∃𝑟 ∈ 𝐵 (𝑎 + 𝑟) = 𝑦 ↔ ∃𝑟 ∈ 𝐵 (𝑎 + 𝑟) = 𝑢)) |
78 | 75, 77 | anbi12d 471 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑢 → ((∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑎 + 𝑟) = 𝑦) ↔ (∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢 ∧ ∃𝑟 ∈ 𝐵 (𝑎 + 𝑟) = 𝑢))) |
79 | 73, 78 | rspc2va 2849 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑎 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → (∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢 ∧ ∃𝑟 ∈ 𝐵 (𝑎 + 𝑟) = 𝑢)) |
80 | 79 | simpld 111 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢) |
81 | 80 | ex 114 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) → ∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢)) |
82 | 81 | ancoms 266 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) → ∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢)) |
83 | 82 | com12 30 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦) → ((𝑢 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → ∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢)) |
84 | 83 | 3ad2ant3 1016 |
. . . . . . . . . . 11
⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → ((𝑢 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → ∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢)) |
85 | 84 | impl 378 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ 𝑎 ∈ 𝐵) → ∃𝑙 ∈ 𝐵 (𝑙 + 𝑎) = 𝑢) |
86 | | oveq1 5864 |
. . . . . . . . . . . 12
⊢ (𝑙 = 𝑖 → (𝑙 + 𝑎) = (𝑖 + 𝑎)) |
87 | 86 | eqeq1d 2180 |
. . . . . . . . . . 11
⊢ (𝑙 = 𝑖 → ((𝑙 + 𝑎) = 𝑢 ↔ (𝑖 + 𝑎) = 𝑢)) |
88 | 87 | cbvrexvw 2702 |
. . . . . . . . . 10
⊢
(∃𝑙 ∈
𝐵 (𝑙 + 𝑎) = 𝑢 ↔ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢) |
89 | 85, 88 | sylib 121 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑢 ∈ 𝐵) ∧ 𝑎 ∈ 𝐵) → ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢) |
90 | 89 | adantllr 479 |
. . . . . . . 8
⊢
(((((𝐺 ∈ Smgrp
∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑎 ∈ 𝐵) → ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢) |
91 | 90 | adantrr 477 |
. . . . . . 7
⊢
(((((𝐺 ∈ Smgrp
∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢) |
92 | 66, 91 | jca 304 |
. . . . . 6
⊢
(((((𝐺 ∈ Smgrp
∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ (𝑎 ∈ 𝐵 ∧ (𝑢 + 𝑤) = 𝑤)) → ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢)) |
93 | 92 | expr 373 |
. . . . 5
⊢
(((((𝐺 ∈ Smgrp
∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) ∧ 𝑎 ∈ 𝐵) → ((𝑢 + 𝑤) = 𝑤 → ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢))) |
94 | 93 | ralrimdva 2551 |
. . . 4
⊢ ((((𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) ∧ 𝑢 ∈ 𝐵) → ((𝑢 + 𝑤) = 𝑤 → ∀𝑎 ∈ 𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢))) |
95 | 94 | reximdva 2573 |
. . 3
⊢ (((𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) → (∃𝑢 ∈ 𝐵 (𝑢 + 𝑤) = 𝑤 → ∃𝑢 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢))) |
96 | 31, 95 | mpd 13 |
. 2
⊢ (((𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) ∧ 𝑤 ∈ 𝐵) → ∃𝑢 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢)) |
97 | 4, 5, 6, 96 | exlimdd 1866 |
1
⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑢 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢)) |