ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemr GIF version

Theorem exmidfodomrlemr 7058
Description: The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.)
Assertion
Ref Expression
exmidfodomrlemr (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → EXMID)
Distinct variable group:   𝑥,𝑓,𝑦,𝑧

Proof of Theorem exmidfodomrlemr
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1508 . . . . . . . . 9 𝑓(∃𝑧 𝑧𝑦𝑦𝑥)
2 nfe1 1472 . . . . . . . . 9 𝑓𝑓 𝑓:𝑥onto𝑦
31, 2nfim 1551 . . . . . . . 8 𝑓((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦)
43nfal 1555 . . . . . . 7 𝑓𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦)
54nfal 1555 . . . . . 6 𝑓𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦)
6 nfv 1508 . . . . . 6 𝑓 𝑢 ⊆ {∅}
75, 6nfan 1544 . . . . 5 𝑓(∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅})
8 nfv 1508 . . . . 5 𝑓DECID ∅ ∈ 𝑢
9 simpl 108 . . . . . 6 ((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) → ∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦))
10 p0ex 4112 . . . . . . . . . . . 12 {∅} ∈ V
11 ssdomg 6672 . . . . . . . . . . . 12 ({∅} ∈ V → (𝑢 ⊆ {∅} → 𝑢 ≼ {∅}))
1210, 11ax-mp 5 . . . . . . . . . . 11 (𝑢 ⊆ {∅} → 𝑢 ≼ {∅})
13 df1o2 6326 . . . . . . . . . . 11 1o = {∅}
1412, 13breqtrrdi 3970 . . . . . . . . . 10 (𝑢 ⊆ {∅} → 𝑢 ≼ 1o)
15 1onn 6416 . . . . . . . . . . 11 1o ∈ ω
16 domrefg 6661 . . . . . . . . . . 11 (1o ∈ ω → 1o ≼ 1o)
1715, 16ax-mp 5 . . . . . . . . . 10 1o ≼ 1o
18 djudom 6978 . . . . . . . . . 10 ((𝑢 ≼ 1o ∧ 1o ≼ 1o) → (𝑢 ⊔ 1o) ≼ (1o ⊔ 1o))
1914, 17, 18sylancl 409 . . . . . . . . 9 (𝑢 ⊆ {∅} → (𝑢 ⊔ 1o) ≼ (1o ⊔ 1o))
20 dju1p1e2 7053 . . . . . . . . 9 (1o ⊔ 1o) ≈ 2o
21 domentr 6685 . . . . . . . . 9 (((𝑢 ⊔ 1o) ≼ (1o ⊔ 1o) ∧ (1o ⊔ 1o) ≈ 2o) → (𝑢 ⊔ 1o) ≼ 2o)
2219, 20, 21sylancl 409 . . . . . . . 8 (𝑢 ⊆ {∅} → (𝑢 ⊔ 1o) ≼ 2o)
2322adantl 275 . . . . . . 7 ((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) → (𝑢 ⊔ 1o) ≼ 2o)
24 0lt1o 6337 . . . . . . . . 9 ∅ ∈ 1o
25 djurcl 6937 . . . . . . . . 9 (∅ ∈ 1o → (inr‘∅) ∈ (𝑢 ⊔ 1o))
2624, 25ax-mp 5 . . . . . . . 8 (inr‘∅) ∈ (𝑢 ⊔ 1o)
27 elex2 2702 . . . . . . . 8 ((inr‘∅) ∈ (𝑢 ⊔ 1o) → ∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o))
2826, 27ax-mp 5 . . . . . . 7 𝑧 𝑧 ∈ (𝑢 ⊔ 1o)
2923, 28jctil 310 . . . . . 6 ((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) → (∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o) ∧ (𝑢 ⊔ 1o) ≼ 2o))
30 vex 2689 . . . . . . . 8 𝑢 ∈ V
31 djuex 6928 . . . . . . . 8 ((𝑢 ∈ V ∧ 1o ∈ ω) → (𝑢 ⊔ 1o) ∈ V)
3230, 15, 31mp2an 422 . . . . . . 7 (𝑢 ⊔ 1o) ∈ V
33 2onn 6417 . . . . . . . 8 2o ∈ ω
34 breq2 3933 . . . . . . . . . . . 12 (𝑥 = 2o → (𝑦𝑥𝑦 ≼ 2o))
3534anbi2d 459 . . . . . . . . . . 11 (𝑥 = 2o → ((∃𝑧 𝑧𝑦𝑦𝑥) ↔ (∃𝑧 𝑧𝑦𝑦 ≼ 2o)))
36 foeq2 5342 . . . . . . . . . . . 12 (𝑥 = 2o → (𝑓:𝑥onto𝑦𝑓:2oonto𝑦))
3736exbidv 1797 . . . . . . . . . . 11 (𝑥 = 2o → (∃𝑓 𝑓:𝑥onto𝑦 ↔ ∃𝑓 𝑓:2oonto𝑦))
3835, 37imbi12d 233 . . . . . . . . . 10 (𝑥 = 2o → (((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ↔ ((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦)))
3938albidv 1796 . . . . . . . . 9 (𝑥 = 2o → (∀𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ↔ ∀𝑦((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦)))
4039spcgv 2773 . . . . . . . 8 (2o ∈ ω → (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → ∀𝑦((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦)))
4133, 40ax-mp 5 . . . . . . 7 (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → ∀𝑦((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦))
42 eleq2 2203 . . . . . . . . . . 11 (𝑦 = (𝑢 ⊔ 1o) → (𝑧𝑦𝑧 ∈ (𝑢 ⊔ 1o)))
4342exbidv 1797 . . . . . . . . . 10 (𝑦 = (𝑢 ⊔ 1o) → (∃𝑧 𝑧𝑦 ↔ ∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o)))
44 breq1 3932 . . . . . . . . . 10 (𝑦 = (𝑢 ⊔ 1o) → (𝑦 ≼ 2o ↔ (𝑢 ⊔ 1o) ≼ 2o))
4543, 44anbi12d 464 . . . . . . . . 9 (𝑦 = (𝑢 ⊔ 1o) → ((∃𝑧 𝑧𝑦𝑦 ≼ 2o) ↔ (∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o) ∧ (𝑢 ⊔ 1o) ≼ 2o)))
46 foeq3 5343 . . . . . . . . . 10 (𝑦 = (𝑢 ⊔ 1o) → (𝑓:2oonto𝑦𝑓:2oonto→(𝑢 ⊔ 1o)))
4746exbidv 1797 . . . . . . . . 9 (𝑦 = (𝑢 ⊔ 1o) → (∃𝑓 𝑓:2oonto𝑦 ↔ ∃𝑓 𝑓:2oonto→(𝑢 ⊔ 1o)))
4845, 47imbi12d 233 . . . . . . . 8 (𝑦 = (𝑢 ⊔ 1o) → (((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦) ↔ ((∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o) ∧ (𝑢 ⊔ 1o) ≼ 2o) → ∃𝑓 𝑓:2oonto→(𝑢 ⊔ 1o))))
4948spcgv 2773 . . . . . . 7 ((𝑢 ⊔ 1o) ∈ V → (∀𝑦((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦) → ((∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o) ∧ (𝑢 ⊔ 1o) ≼ 2o) → ∃𝑓 𝑓:2oonto→(𝑢 ⊔ 1o))))
5032, 41, 49mpsyl 65 . . . . . 6 (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → ((∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o) ∧ (𝑢 ⊔ 1o) ≼ 2o) → ∃𝑓 𝑓:2oonto→(𝑢 ⊔ 1o)))
519, 29, 50sylc 62 . . . . 5 ((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) → ∃𝑓 𝑓:2oonto→(𝑢 ⊔ 1o))
52 simpr 109 . . . . . . . . . 10 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inl‘∅)) → (𝑓‘∅) = (inl‘∅))
53 fof 5345 . . . . . . . . . . . . 13 (𝑓:2oonto→(𝑢 ⊔ 1o) → 𝑓:2o⟶(𝑢 ⊔ 1o))
5453adantl 275 . . . . . . . . . . . 12 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → 𝑓:2o⟶(𝑢 ⊔ 1o))
55 elelsuc 4331 . . . . . . . . . . . . . . 15 (∅ ∈ 1o → ∅ ∈ suc 1o)
5624, 55ax-mp 5 . . . . . . . . . . . . . 14 ∅ ∈ suc 1o
57 df-2o 6314 . . . . . . . . . . . . . 14 2o = suc 1o
5856, 57eleqtrri 2215 . . . . . . . . . . . . 13 ∅ ∈ 2o
5958a1i 9 . . . . . . . . . . . 12 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → ∅ ∈ 2o)
6054, 59ffvelrnd 5556 . . . . . . . . . . 11 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → (𝑓‘∅) ∈ (𝑢 ⊔ 1o))
6160adantr 274 . . . . . . . . . 10 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inl‘∅)) → (𝑓‘∅) ∈ (𝑢 ⊔ 1o))
6252, 61eqeltrrd 2217 . . . . . . . . 9 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inl‘∅)) → (inl‘∅) ∈ (𝑢 ⊔ 1o))
63 0ex 4055 . . . . . . . . . 10 ∅ ∈ V
64 djulclb 6940 . . . . . . . . . 10 (∅ ∈ V → (∅ ∈ 𝑢 ↔ (inl‘∅) ∈ (𝑢 ⊔ 1o)))
6563, 64ax-mp 5 . . . . . . . . 9 (∅ ∈ 𝑢 ↔ (inl‘∅) ∈ (𝑢 ⊔ 1o))
6662, 65sylibr 133 . . . . . . . 8 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inl‘∅)) → ∅ ∈ 𝑢)
6766orcd 722 . . . . . . 7 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inl‘∅)) → (∅ ∈ 𝑢 ∨ ¬ ∅ ∈ 𝑢))
68 df-dc 820 . . . . . . 7 (DECID ∅ ∈ 𝑢 ↔ (∅ ∈ 𝑢 ∨ ¬ ∅ ∈ 𝑢))
6967, 68sylibr 133 . . . . . 6 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inl‘∅)) → DECID ∅ ∈ 𝑢)
70 simpr 109 . . . . . . . . . . 11 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inl‘∅)) → (𝑓‘1o) = (inl‘∅))
7154adantr 274 . . . . . . . . . . . . 13 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) → 𝑓:2o⟶(𝑢 ⊔ 1o))
72 1oex 6321 . . . . . . . . . . . . . . . 16 1o ∈ V
7372prid2 3630 . . . . . . . . . . . . . . 15 1o ∈ {∅, 1o}
74 df2o3 6327 . . . . . . . . . . . . . . 15 2o = {∅, 1o}
7573, 74eleqtrri 2215 . . . . . . . . . . . . . 14 1o ∈ 2o
7675a1i 9 . . . . . . . . . . . . 13 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) → 1o ∈ 2o)
7771, 76ffvelrnd 5556 . . . . . . . . . . . 12 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) → (𝑓‘1o) ∈ (𝑢 ⊔ 1o))
7877adantr 274 . . . . . . . . . . 11 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inl‘∅)) → (𝑓‘1o) ∈ (𝑢 ⊔ 1o))
7970, 78eqeltrrd 2217 . . . . . . . . . 10 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inl‘∅)) → (inl‘∅) ∈ (𝑢 ⊔ 1o))
8079, 65sylibr 133 . . . . . . . . 9 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inl‘∅)) → ∅ ∈ 𝑢)
8180orcd 722 . . . . . . . 8 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inl‘∅)) → (∅ ∈ 𝑢 ∨ ¬ ∅ ∈ 𝑢))
8281, 68sylibr 133 . . . . . . 7 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inl‘∅)) → DECID ∅ ∈ 𝑢)
83 simp-4r 531 . . . . . . . . . . . 12 ((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) → 𝑓:2oonto→(𝑢 ⊔ 1o))
84 djulcl 6936 . . . . . . . . . . . . 13 (∅ ∈ 𝑢 → (inl‘∅) ∈ (𝑢 ⊔ 1o))
8584adantl 275 . . . . . . . . . . . 12 ((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) → (inl‘∅) ∈ (𝑢 ⊔ 1o))
86 foelrn 5654 . . . . . . . . . . . 12 ((𝑓:2oonto→(𝑢 ⊔ 1o) ∧ (inl‘∅) ∈ (𝑢 ⊔ 1o)) → ∃𝑤 ∈ 2o (inl‘∅) = (𝑓𝑤))
8783, 85, 86syl2anc 408 . . . . . . . . . . 11 ((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) → ∃𝑤 ∈ 2o (inl‘∅) = (𝑓𝑤))
88 simplrr 525 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = ∅) → (inl‘∅) = (𝑓𝑤))
89 simpr 109 . . . . . . . . . . . . . 14 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = ∅) → 𝑤 = ∅)
9089fveq2d 5425 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = ∅) → (𝑓𝑤) = (𝑓‘∅))
91 simp-5r 533 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = ∅) → (𝑓‘∅) = (inr‘∅))
9288, 90, 913eqtrd 2176 . . . . . . . . . . . 12 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = ∅) → (inl‘∅) = (inr‘∅))
93 simplrr 525 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = 1o) → (inl‘∅) = (𝑓𝑤))
94 simpr 109 . . . . . . . . . . . . . 14 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = 1o) → 𝑤 = 1o)
9594fveq2d 5425 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = 1o) → (𝑓𝑤) = (𝑓‘1o))
96 simp-4r 531 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = 1o) → (𝑓‘1o) = (inr‘∅))
9793, 95, 963eqtrd 2176 . . . . . . . . . . . 12 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = 1o) → (inl‘∅) = (inr‘∅))
98 elpri 3550 . . . . . . . . . . . . . 14 (𝑤 ∈ {∅, 1o} → (𝑤 = ∅ ∨ 𝑤 = 1o))
9998, 74eleq2s 2234 . . . . . . . . . . . . 13 (𝑤 ∈ 2o → (𝑤 = ∅ ∨ 𝑤 = 1o))
10099ad2antrl 481 . . . . . . . . . . . 12 (((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) → (𝑤 = ∅ ∨ 𝑤 = 1o))
10192, 97, 100mpjaodan 787 . . . . . . . . . . 11 (((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) → (inl‘∅) = (inr‘∅))
10287, 101rexlimddv 2554 . . . . . . . . . 10 ((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) → (inl‘∅) = (inr‘∅))
103 djune 6963 . . . . . . . . . . . . 13 ((∅ ∈ V ∧ ∅ ∈ V) → (inl‘∅) ≠ (inr‘∅))
10463, 63, 103mp2an 422 . . . . . . . . . . . 12 (inl‘∅) ≠ (inr‘∅)
105104neii 2310 . . . . . . . . . . 11 ¬ (inl‘∅) = (inr‘∅)
106105a1i 9 . . . . . . . . . 10 ((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) → ¬ (inl‘∅) = (inr‘∅))
107102, 106pm2.65da 650 . . . . . . . . 9 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) → ¬ ∅ ∈ 𝑢)
108107olcd 723 . . . . . . . 8 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) → (∅ ∈ 𝑢 ∨ ¬ ∅ ∈ 𝑢))
109108, 68sylibr 133 . . . . . . 7 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) → DECID ∅ ∈ 𝑢)
110 simplr 519 . . . . . . . . . 10 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → 𝑢 ⊆ {∅})
111110, 13sseqtrrdi 3146 . . . . . . . . 9 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → 𝑢 ⊆ 1o)
112111adantr 274 . . . . . . . 8 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) → 𝑢 ⊆ 1o)
113112, 77exmidfodomrlemeldju 7055 . . . . . . 7 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) → ((𝑓‘1o) = (inl‘∅) ∨ (𝑓‘1o) = (inr‘∅)))
11482, 109, 113mpjaodan 787 . . . . . 6 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) → DECID ∅ ∈ 𝑢)
115111, 60exmidfodomrlemeldju 7055 . . . . . 6 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → ((𝑓‘∅) = (inl‘∅) ∨ (𝑓‘∅) = (inr‘∅)))
11669, 114, 115mpjaodan 787 . . . . 5 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → DECID ∅ ∈ 𝑢)
1177, 8, 51, 116exlimdd 1844 . . . 4 ((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) → DECID ∅ ∈ 𝑢)
118117ex 114 . . 3 (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → (𝑢 ⊆ {∅} → DECID ∅ ∈ 𝑢))
119118alrimiv 1846 . 2 (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → ∀𝑢(𝑢 ⊆ {∅} → DECID ∅ ∈ 𝑢))
120 df-exmid 4119 . 2 (EXMID ↔ ∀𝑢(𝑢 ⊆ {∅} → DECID ∅ ∈ 𝑢))
121119, 120sylibr 133 1 (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  DECID wdc 819  wal 1329   = wceq 1331  wex 1468  wcel 1480  wne 2308  wrex 2417  Vcvv 2686  wss 3071  c0 3363  {csn 3527  {cpr 3528   class class class wbr 3929  EXMIDwem 4118  suc csuc 4287  ωcom 4504  wf 5119  ontowfo 5121  cfv 5123  1oc1o 6306  2oc2o 6307  cen 6632  cdom 6633  cdju 6922  inlcinl 6930  inrcinr 6931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-exmid 4119  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039  df-1o 6313  df-2o 6314  df-er 6429  df-en 6635  df-dom 6636  df-dju 6923  df-inl 6932  df-inr 6933  df-case 6969
This theorem is referenced by:  exmidfodomr  7060
  Copyright terms: Public domain W3C validator