ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemr GIF version

Theorem exmidfodomrlemr 7264
Description: The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.)
Assertion
Ref Expression
exmidfodomrlemr (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → EXMID)
Distinct variable group:   𝑥,𝑓,𝑦,𝑧

Proof of Theorem exmidfodomrlemr
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1539 . . . . . . . . 9 𝑓(∃𝑧 𝑧𝑦𝑦𝑥)
2 nfe1 1507 . . . . . . . . 9 𝑓𝑓 𝑓:𝑥onto𝑦
31, 2nfim 1583 . . . . . . . 8 𝑓((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦)
43nfal 1587 . . . . . . 7 𝑓𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦)
54nfal 1587 . . . . . 6 𝑓𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦)
6 nfv 1539 . . . . . 6 𝑓 𝑢 ⊆ {∅}
75, 6nfan 1576 . . . . 5 𝑓(∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅})
8 nfv 1539 . . . . 5 𝑓DECID ∅ ∈ 𝑢
9 simpl 109 . . . . . 6 ((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) → ∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦))
10 p0ex 4218 . . . . . . . . . . . 12 {∅} ∈ V
11 ssdomg 6834 . . . . . . . . . . . 12 ({∅} ∈ V → (𝑢 ⊆ {∅} → 𝑢 ≼ {∅}))
1210, 11ax-mp 5 . . . . . . . . . . 11 (𝑢 ⊆ {∅} → 𝑢 ≼ {∅})
13 df1o2 6484 . . . . . . . . . . 11 1o = {∅}
1412, 13breqtrrdi 4072 . . . . . . . . . 10 (𝑢 ⊆ {∅} → 𝑢 ≼ 1o)
15 1onn 6575 . . . . . . . . . . 11 1o ∈ ω
16 domrefg 6823 . . . . . . . . . . 11 (1o ∈ ω → 1o ≼ 1o)
1715, 16ax-mp 5 . . . . . . . . . 10 1o ≼ 1o
18 djudom 7154 . . . . . . . . . 10 ((𝑢 ≼ 1o ∧ 1o ≼ 1o) → (𝑢 ⊔ 1o) ≼ (1o ⊔ 1o))
1914, 17, 18sylancl 413 . . . . . . . . 9 (𝑢 ⊆ {∅} → (𝑢 ⊔ 1o) ≼ (1o ⊔ 1o))
20 dju1p1e2 7259 . . . . . . . . 9 (1o ⊔ 1o) ≈ 2o
21 domentr 6847 . . . . . . . . 9 (((𝑢 ⊔ 1o) ≼ (1o ⊔ 1o) ∧ (1o ⊔ 1o) ≈ 2o) → (𝑢 ⊔ 1o) ≼ 2o)
2219, 20, 21sylancl 413 . . . . . . . 8 (𝑢 ⊆ {∅} → (𝑢 ⊔ 1o) ≼ 2o)
2322adantl 277 . . . . . . 7 ((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) → (𝑢 ⊔ 1o) ≼ 2o)
24 0lt1o 6495 . . . . . . . . 9 ∅ ∈ 1o
25 djurcl 7113 . . . . . . . . 9 (∅ ∈ 1o → (inr‘∅) ∈ (𝑢 ⊔ 1o))
2624, 25ax-mp 5 . . . . . . . 8 (inr‘∅) ∈ (𝑢 ⊔ 1o)
27 elex2 2776 . . . . . . . 8 ((inr‘∅) ∈ (𝑢 ⊔ 1o) → ∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o))
2826, 27ax-mp 5 . . . . . . 7 𝑧 𝑧 ∈ (𝑢 ⊔ 1o)
2923, 28jctil 312 . . . . . 6 ((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) → (∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o) ∧ (𝑢 ⊔ 1o) ≼ 2o))
30 vex 2763 . . . . . . . 8 𝑢 ∈ V
31 djuex 7104 . . . . . . . 8 ((𝑢 ∈ V ∧ 1o ∈ ω) → (𝑢 ⊔ 1o) ∈ V)
3230, 15, 31mp2an 426 . . . . . . 7 (𝑢 ⊔ 1o) ∈ V
33 2onn 6576 . . . . . . . 8 2o ∈ ω
34 breq2 4034 . . . . . . . . . . . 12 (𝑥 = 2o → (𝑦𝑥𝑦 ≼ 2o))
3534anbi2d 464 . . . . . . . . . . 11 (𝑥 = 2o → ((∃𝑧 𝑧𝑦𝑦𝑥) ↔ (∃𝑧 𝑧𝑦𝑦 ≼ 2o)))
36 foeq2 5474 . . . . . . . . . . . 12 (𝑥 = 2o → (𝑓:𝑥onto𝑦𝑓:2oonto𝑦))
3736exbidv 1836 . . . . . . . . . . 11 (𝑥 = 2o → (∃𝑓 𝑓:𝑥onto𝑦 ↔ ∃𝑓 𝑓:2oonto𝑦))
3835, 37imbi12d 234 . . . . . . . . . 10 (𝑥 = 2o → (((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ↔ ((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦)))
3938albidv 1835 . . . . . . . . 9 (𝑥 = 2o → (∀𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ↔ ∀𝑦((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦)))
4039spcgv 2848 . . . . . . . 8 (2o ∈ ω → (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → ∀𝑦((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦)))
4133, 40ax-mp 5 . . . . . . 7 (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → ∀𝑦((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦))
42 eleq2 2257 . . . . . . . . . . 11 (𝑦 = (𝑢 ⊔ 1o) → (𝑧𝑦𝑧 ∈ (𝑢 ⊔ 1o)))
4342exbidv 1836 . . . . . . . . . 10 (𝑦 = (𝑢 ⊔ 1o) → (∃𝑧 𝑧𝑦 ↔ ∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o)))
44 breq1 4033 . . . . . . . . . 10 (𝑦 = (𝑢 ⊔ 1o) → (𝑦 ≼ 2o ↔ (𝑢 ⊔ 1o) ≼ 2o))
4543, 44anbi12d 473 . . . . . . . . 9 (𝑦 = (𝑢 ⊔ 1o) → ((∃𝑧 𝑧𝑦𝑦 ≼ 2o) ↔ (∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o) ∧ (𝑢 ⊔ 1o) ≼ 2o)))
46 foeq3 5475 . . . . . . . . . 10 (𝑦 = (𝑢 ⊔ 1o) → (𝑓:2oonto𝑦𝑓:2oonto→(𝑢 ⊔ 1o)))
4746exbidv 1836 . . . . . . . . 9 (𝑦 = (𝑢 ⊔ 1o) → (∃𝑓 𝑓:2oonto𝑦 ↔ ∃𝑓 𝑓:2oonto→(𝑢 ⊔ 1o)))
4845, 47imbi12d 234 . . . . . . . 8 (𝑦 = (𝑢 ⊔ 1o) → (((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦) ↔ ((∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o) ∧ (𝑢 ⊔ 1o) ≼ 2o) → ∃𝑓 𝑓:2oonto→(𝑢 ⊔ 1o))))
4948spcgv 2848 . . . . . . 7 ((𝑢 ⊔ 1o) ∈ V → (∀𝑦((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦) → ((∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o) ∧ (𝑢 ⊔ 1o) ≼ 2o) → ∃𝑓 𝑓:2oonto→(𝑢 ⊔ 1o))))
5032, 41, 49mpsyl 65 . . . . . 6 (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → ((∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o) ∧ (𝑢 ⊔ 1o) ≼ 2o) → ∃𝑓 𝑓:2oonto→(𝑢 ⊔ 1o)))
519, 29, 50sylc 62 . . . . 5 ((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) → ∃𝑓 𝑓:2oonto→(𝑢 ⊔ 1o))
52 simpr 110 . . . . . . . . . 10 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inl‘∅)) → (𝑓‘∅) = (inl‘∅))
53 fof 5477 . . . . . . . . . . . . 13 (𝑓:2oonto→(𝑢 ⊔ 1o) → 𝑓:2o⟶(𝑢 ⊔ 1o))
5453adantl 277 . . . . . . . . . . . 12 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → 𝑓:2o⟶(𝑢 ⊔ 1o))
55 elelsuc 4441 . . . . . . . . . . . . . . 15 (∅ ∈ 1o → ∅ ∈ suc 1o)
5624, 55ax-mp 5 . . . . . . . . . . . . . 14 ∅ ∈ suc 1o
57 df-2o 6472 . . . . . . . . . . . . . 14 2o = suc 1o
5856, 57eleqtrri 2269 . . . . . . . . . . . . 13 ∅ ∈ 2o
5958a1i 9 . . . . . . . . . . . 12 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → ∅ ∈ 2o)
6054, 59ffvelcdmd 5695 . . . . . . . . . . 11 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → (𝑓‘∅) ∈ (𝑢 ⊔ 1o))
6160adantr 276 . . . . . . . . . 10 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inl‘∅)) → (𝑓‘∅) ∈ (𝑢 ⊔ 1o))
6252, 61eqeltrrd 2271 . . . . . . . . 9 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inl‘∅)) → (inl‘∅) ∈ (𝑢 ⊔ 1o))
63 0ex 4157 . . . . . . . . . 10 ∅ ∈ V
64 djulclb 7116 . . . . . . . . . 10 (∅ ∈ V → (∅ ∈ 𝑢 ↔ (inl‘∅) ∈ (𝑢 ⊔ 1o)))
6563, 64ax-mp 5 . . . . . . . . 9 (∅ ∈ 𝑢 ↔ (inl‘∅) ∈ (𝑢 ⊔ 1o))
6662, 65sylibr 134 . . . . . . . 8 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inl‘∅)) → ∅ ∈ 𝑢)
6766orcd 734 . . . . . . 7 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inl‘∅)) → (∅ ∈ 𝑢 ∨ ¬ ∅ ∈ 𝑢))
68 df-dc 836 . . . . . . 7 (DECID ∅ ∈ 𝑢 ↔ (∅ ∈ 𝑢 ∨ ¬ ∅ ∈ 𝑢))
6967, 68sylibr 134 . . . . . 6 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inl‘∅)) → DECID ∅ ∈ 𝑢)
70 simpr 110 . . . . . . . . . . 11 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inl‘∅)) → (𝑓‘1o) = (inl‘∅))
7154adantr 276 . . . . . . . . . . . . 13 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) → 𝑓:2o⟶(𝑢 ⊔ 1o))
72 1oex 6479 . . . . . . . . . . . . . . . 16 1o ∈ V
7372prid2 3726 . . . . . . . . . . . . . . 15 1o ∈ {∅, 1o}
74 df2o3 6485 . . . . . . . . . . . . . . 15 2o = {∅, 1o}
7573, 74eleqtrri 2269 . . . . . . . . . . . . . 14 1o ∈ 2o
7675a1i 9 . . . . . . . . . . . . 13 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) → 1o ∈ 2o)
7771, 76ffvelcdmd 5695 . . . . . . . . . . . 12 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) → (𝑓‘1o) ∈ (𝑢 ⊔ 1o))
7877adantr 276 . . . . . . . . . . 11 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inl‘∅)) → (𝑓‘1o) ∈ (𝑢 ⊔ 1o))
7970, 78eqeltrrd 2271 . . . . . . . . . 10 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inl‘∅)) → (inl‘∅) ∈ (𝑢 ⊔ 1o))
8079, 65sylibr 134 . . . . . . . . 9 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inl‘∅)) → ∅ ∈ 𝑢)
8180orcd 734 . . . . . . . 8 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inl‘∅)) → (∅ ∈ 𝑢 ∨ ¬ ∅ ∈ 𝑢))
8281, 68sylibr 134 . . . . . . 7 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inl‘∅)) → DECID ∅ ∈ 𝑢)
83 simp-4r 542 . . . . . . . . . . . 12 ((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) → 𝑓:2oonto→(𝑢 ⊔ 1o))
84 djulcl 7112 . . . . . . . . . . . . 13 (∅ ∈ 𝑢 → (inl‘∅) ∈ (𝑢 ⊔ 1o))
8584adantl 277 . . . . . . . . . . . 12 ((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) → (inl‘∅) ∈ (𝑢 ⊔ 1o))
86 foelrn 5796 . . . . . . . . . . . 12 ((𝑓:2oonto→(𝑢 ⊔ 1o) ∧ (inl‘∅) ∈ (𝑢 ⊔ 1o)) → ∃𝑤 ∈ 2o (inl‘∅) = (𝑓𝑤))
8783, 85, 86syl2anc 411 . . . . . . . . . . 11 ((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) → ∃𝑤 ∈ 2o (inl‘∅) = (𝑓𝑤))
88 simplrr 536 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = ∅) → (inl‘∅) = (𝑓𝑤))
89 simpr 110 . . . . . . . . . . . . . 14 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = ∅) → 𝑤 = ∅)
9089fveq2d 5559 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = ∅) → (𝑓𝑤) = (𝑓‘∅))
91 simp-5r 544 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = ∅) → (𝑓‘∅) = (inr‘∅))
9288, 90, 913eqtrd 2230 . . . . . . . . . . . 12 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = ∅) → (inl‘∅) = (inr‘∅))
93 simplrr 536 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = 1o) → (inl‘∅) = (𝑓𝑤))
94 simpr 110 . . . . . . . . . . . . . 14 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = 1o) → 𝑤 = 1o)
9594fveq2d 5559 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = 1o) → (𝑓𝑤) = (𝑓‘1o))
96 simp-4r 542 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = 1o) → (𝑓‘1o) = (inr‘∅))
9793, 95, 963eqtrd 2230 . . . . . . . . . . . 12 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = 1o) → (inl‘∅) = (inr‘∅))
98 elpri 3642 . . . . . . . . . . . . . 14 (𝑤 ∈ {∅, 1o} → (𝑤 = ∅ ∨ 𝑤 = 1o))
9998, 74eleq2s 2288 . . . . . . . . . . . . 13 (𝑤 ∈ 2o → (𝑤 = ∅ ∨ 𝑤 = 1o))
10099ad2antrl 490 . . . . . . . . . . . 12 (((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) → (𝑤 = ∅ ∨ 𝑤 = 1o))
10192, 97, 100mpjaodan 799 . . . . . . . . . . 11 (((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) → (inl‘∅) = (inr‘∅))
10287, 101rexlimddv 2616 . . . . . . . . . 10 ((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) → (inl‘∅) = (inr‘∅))
103 djune 7139 . . . . . . . . . . . . 13 ((∅ ∈ V ∧ ∅ ∈ V) → (inl‘∅) ≠ (inr‘∅))
10463, 63, 103mp2an 426 . . . . . . . . . . . 12 (inl‘∅) ≠ (inr‘∅)
105104neii 2366 . . . . . . . . . . 11 ¬ (inl‘∅) = (inr‘∅)
106105a1i 9 . . . . . . . . . 10 ((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) → ¬ (inl‘∅) = (inr‘∅))
107102, 106pm2.65da 662 . . . . . . . . 9 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) → ¬ ∅ ∈ 𝑢)
108107olcd 735 . . . . . . . 8 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) → (∅ ∈ 𝑢 ∨ ¬ ∅ ∈ 𝑢))
109108, 68sylibr 134 . . . . . . 7 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) → DECID ∅ ∈ 𝑢)
110 simplr 528 . . . . . . . . . 10 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → 𝑢 ⊆ {∅})
111110, 13sseqtrrdi 3229 . . . . . . . . 9 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → 𝑢 ⊆ 1o)
112111adantr 276 . . . . . . . 8 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) → 𝑢 ⊆ 1o)
113112, 77exmidfodomrlemeldju 7261 . . . . . . 7 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) → ((𝑓‘1o) = (inl‘∅) ∨ (𝑓‘1o) = (inr‘∅)))
11482, 109, 113mpjaodan 799 . . . . . 6 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) → DECID ∅ ∈ 𝑢)
115111, 60exmidfodomrlemeldju 7261 . . . . . 6 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → ((𝑓‘∅) = (inl‘∅) ∨ (𝑓‘∅) = (inr‘∅)))
11669, 114, 115mpjaodan 799 . . . . 5 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → DECID ∅ ∈ 𝑢)
1177, 8, 51, 116exlimdd 1883 . . . 4 ((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) → DECID ∅ ∈ 𝑢)
118117ex 115 . . 3 (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → (𝑢 ⊆ {∅} → DECID ∅ ∈ 𝑢))
119118alrimiv 1885 . 2 (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → ∀𝑢(𝑢 ⊆ {∅} → DECID ∅ ∈ 𝑢))
120 df-exmid 4225 . 2 (EXMID ↔ ∀𝑢(𝑢 ⊆ {∅} → DECID ∅ ∈ 𝑢))
121119, 120sylibr 134 1 (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  wal 1362   = wceq 1364  wex 1503  wcel 2164  wne 2364  wrex 2473  Vcvv 2760  wss 3154  c0 3447  {csn 3619  {cpr 3620   class class class wbr 4030  EXMIDwem 4224  suc csuc 4397  ωcom 4623  wf 5251  ontowfo 5253  cfv 5255  1oc1o 6464  2oc2o 6465  cen 6794  cdom 6795  cdju 7098  inlcinl 7106  inrcinr 7107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-exmid 4225  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-1o 6471  df-2o 6472  df-er 6589  df-en 6797  df-dom 6798  df-dju 7099  df-inl 7108  df-inr 7109  df-case 7145
This theorem is referenced by:  exmidfodomr  7266
  Copyright terms: Public domain W3C validator