ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemr GIF version

Theorem exmidfodomrlemr 7026
Description: The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.)
Assertion
Ref Expression
exmidfodomrlemr (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → EXMID)
Distinct variable group:   𝑥,𝑓,𝑦,𝑧

Proof of Theorem exmidfodomrlemr
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1493 . . . . . . . . 9 𝑓(∃𝑧 𝑧𝑦𝑦𝑥)
2 nfe1 1457 . . . . . . . . 9 𝑓𝑓 𝑓:𝑥onto𝑦
31, 2nfim 1536 . . . . . . . 8 𝑓((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦)
43nfal 1540 . . . . . . 7 𝑓𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦)
54nfal 1540 . . . . . 6 𝑓𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦)
6 nfv 1493 . . . . . 6 𝑓 𝑢 ⊆ {∅}
75, 6nfan 1529 . . . . 5 𝑓(∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅})
8 nfv 1493 . . . . 5 𝑓DECID ∅ ∈ 𝑢
9 simpl 108 . . . . . 6 ((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) → ∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦))
10 p0ex 4082 . . . . . . . . . . . 12 {∅} ∈ V
11 ssdomg 6640 . . . . . . . . . . . 12 ({∅} ∈ V → (𝑢 ⊆ {∅} → 𝑢 ≼ {∅}))
1210, 11ax-mp 5 . . . . . . . . . . 11 (𝑢 ⊆ {∅} → 𝑢 ≼ {∅})
13 df1o2 6294 . . . . . . . . . . 11 1o = {∅}
1412, 13breqtrrdi 3940 . . . . . . . . . 10 (𝑢 ⊆ {∅} → 𝑢 ≼ 1o)
15 1onn 6384 . . . . . . . . . . 11 1o ∈ ω
16 domrefg 6629 . . . . . . . . . . 11 (1o ∈ ω → 1o ≼ 1o)
1715, 16ax-mp 5 . . . . . . . . . 10 1o ≼ 1o
18 djudom 6946 . . . . . . . . . 10 ((𝑢 ≼ 1o ∧ 1o ≼ 1o) → (𝑢 ⊔ 1o) ≼ (1o ⊔ 1o))
1914, 17, 18sylancl 409 . . . . . . . . 9 (𝑢 ⊆ {∅} → (𝑢 ⊔ 1o) ≼ (1o ⊔ 1o))
20 dju1p1e2 7021 . . . . . . . . 9 (1o ⊔ 1o) ≈ 2o
21 domentr 6653 . . . . . . . . 9 (((𝑢 ⊔ 1o) ≼ (1o ⊔ 1o) ∧ (1o ⊔ 1o) ≈ 2o) → (𝑢 ⊔ 1o) ≼ 2o)
2219, 20, 21sylancl 409 . . . . . . . 8 (𝑢 ⊆ {∅} → (𝑢 ⊔ 1o) ≼ 2o)
2322adantl 275 . . . . . . 7 ((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) → (𝑢 ⊔ 1o) ≼ 2o)
24 0lt1o 6305 . . . . . . . . 9 ∅ ∈ 1o
25 djurcl 6905 . . . . . . . . 9 (∅ ∈ 1o → (inr‘∅) ∈ (𝑢 ⊔ 1o))
2624, 25ax-mp 5 . . . . . . . 8 (inr‘∅) ∈ (𝑢 ⊔ 1o)
27 elex2 2676 . . . . . . . 8 ((inr‘∅) ∈ (𝑢 ⊔ 1o) → ∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o))
2826, 27ax-mp 5 . . . . . . 7 𝑧 𝑧 ∈ (𝑢 ⊔ 1o)
2923, 28jctil 310 . . . . . 6 ((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) → (∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o) ∧ (𝑢 ⊔ 1o) ≼ 2o))
30 vex 2663 . . . . . . . 8 𝑢 ∈ V
31 djuex 6896 . . . . . . . 8 ((𝑢 ∈ V ∧ 1o ∈ ω) → (𝑢 ⊔ 1o) ∈ V)
3230, 15, 31mp2an 422 . . . . . . 7 (𝑢 ⊔ 1o) ∈ V
33 2onn 6385 . . . . . . . 8 2o ∈ ω
34 breq2 3903 . . . . . . . . . . . 12 (𝑥 = 2o → (𝑦𝑥𝑦 ≼ 2o))
3534anbi2d 459 . . . . . . . . . . 11 (𝑥 = 2o → ((∃𝑧 𝑧𝑦𝑦𝑥) ↔ (∃𝑧 𝑧𝑦𝑦 ≼ 2o)))
36 foeq2 5312 . . . . . . . . . . . 12 (𝑥 = 2o → (𝑓:𝑥onto𝑦𝑓:2oonto𝑦))
3736exbidv 1781 . . . . . . . . . . 11 (𝑥 = 2o → (∃𝑓 𝑓:𝑥onto𝑦 ↔ ∃𝑓 𝑓:2oonto𝑦))
3835, 37imbi12d 233 . . . . . . . . . 10 (𝑥 = 2o → (((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ↔ ((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦)))
3938albidv 1780 . . . . . . . . 9 (𝑥 = 2o → (∀𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ↔ ∀𝑦((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦)))
4039spcgv 2747 . . . . . . . 8 (2o ∈ ω → (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → ∀𝑦((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦)))
4133, 40ax-mp 5 . . . . . . 7 (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → ∀𝑦((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦))
42 eleq2 2181 . . . . . . . . . . 11 (𝑦 = (𝑢 ⊔ 1o) → (𝑧𝑦𝑧 ∈ (𝑢 ⊔ 1o)))
4342exbidv 1781 . . . . . . . . . 10 (𝑦 = (𝑢 ⊔ 1o) → (∃𝑧 𝑧𝑦 ↔ ∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o)))
44 breq1 3902 . . . . . . . . . 10 (𝑦 = (𝑢 ⊔ 1o) → (𝑦 ≼ 2o ↔ (𝑢 ⊔ 1o) ≼ 2o))
4543, 44anbi12d 464 . . . . . . . . 9 (𝑦 = (𝑢 ⊔ 1o) → ((∃𝑧 𝑧𝑦𝑦 ≼ 2o) ↔ (∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o) ∧ (𝑢 ⊔ 1o) ≼ 2o)))
46 foeq3 5313 . . . . . . . . . 10 (𝑦 = (𝑢 ⊔ 1o) → (𝑓:2oonto𝑦𝑓:2oonto→(𝑢 ⊔ 1o)))
4746exbidv 1781 . . . . . . . . 9 (𝑦 = (𝑢 ⊔ 1o) → (∃𝑓 𝑓:2oonto𝑦 ↔ ∃𝑓 𝑓:2oonto→(𝑢 ⊔ 1o)))
4845, 47imbi12d 233 . . . . . . . 8 (𝑦 = (𝑢 ⊔ 1o) → (((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦) ↔ ((∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o) ∧ (𝑢 ⊔ 1o) ≼ 2o) → ∃𝑓 𝑓:2oonto→(𝑢 ⊔ 1o))))
4948spcgv 2747 . . . . . . 7 ((𝑢 ⊔ 1o) ∈ V → (∀𝑦((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦) → ((∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o) ∧ (𝑢 ⊔ 1o) ≼ 2o) → ∃𝑓 𝑓:2oonto→(𝑢 ⊔ 1o))))
5032, 41, 49mpsyl 65 . . . . . 6 (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → ((∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o) ∧ (𝑢 ⊔ 1o) ≼ 2o) → ∃𝑓 𝑓:2oonto→(𝑢 ⊔ 1o)))
519, 29, 50sylc 62 . . . . 5 ((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) → ∃𝑓 𝑓:2oonto→(𝑢 ⊔ 1o))
52 simpr 109 . . . . . . . . . 10 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inl‘∅)) → (𝑓‘∅) = (inl‘∅))
53 fof 5315 . . . . . . . . . . . . 13 (𝑓:2oonto→(𝑢 ⊔ 1o) → 𝑓:2o⟶(𝑢 ⊔ 1o))
5453adantl 275 . . . . . . . . . . . 12 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → 𝑓:2o⟶(𝑢 ⊔ 1o))
55 elelsuc 4301 . . . . . . . . . . . . . . 15 (∅ ∈ 1o → ∅ ∈ suc 1o)
5624, 55ax-mp 5 . . . . . . . . . . . . . 14 ∅ ∈ suc 1o
57 df-2o 6282 . . . . . . . . . . . . . 14 2o = suc 1o
5856, 57eleqtrri 2193 . . . . . . . . . . . . 13 ∅ ∈ 2o
5958a1i 9 . . . . . . . . . . . 12 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → ∅ ∈ 2o)
6054, 59ffvelrnd 5524 . . . . . . . . . . 11 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → (𝑓‘∅) ∈ (𝑢 ⊔ 1o))
6160adantr 274 . . . . . . . . . 10 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inl‘∅)) → (𝑓‘∅) ∈ (𝑢 ⊔ 1o))
6252, 61eqeltrrd 2195 . . . . . . . . 9 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inl‘∅)) → (inl‘∅) ∈ (𝑢 ⊔ 1o))
63 0ex 4025 . . . . . . . . . 10 ∅ ∈ V
64 djulclb 6908 . . . . . . . . . 10 (∅ ∈ V → (∅ ∈ 𝑢 ↔ (inl‘∅) ∈ (𝑢 ⊔ 1o)))
6563, 64ax-mp 5 . . . . . . . . 9 (∅ ∈ 𝑢 ↔ (inl‘∅) ∈ (𝑢 ⊔ 1o))
6662, 65sylibr 133 . . . . . . . 8 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inl‘∅)) → ∅ ∈ 𝑢)
6766orcd 707 . . . . . . 7 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inl‘∅)) → (∅ ∈ 𝑢 ∨ ¬ ∅ ∈ 𝑢))
68 df-dc 805 . . . . . . 7 (DECID ∅ ∈ 𝑢 ↔ (∅ ∈ 𝑢 ∨ ¬ ∅ ∈ 𝑢))
6967, 68sylibr 133 . . . . . 6 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inl‘∅)) → DECID ∅ ∈ 𝑢)
70 simpr 109 . . . . . . . . . . 11 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inl‘∅)) → (𝑓‘1o) = (inl‘∅))
7154adantr 274 . . . . . . . . . . . . 13 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) → 𝑓:2o⟶(𝑢 ⊔ 1o))
72 1oex 6289 . . . . . . . . . . . . . . . 16 1o ∈ V
7372prid2 3600 . . . . . . . . . . . . . . 15 1o ∈ {∅, 1o}
74 df2o3 6295 . . . . . . . . . . . . . . 15 2o = {∅, 1o}
7573, 74eleqtrri 2193 . . . . . . . . . . . . . 14 1o ∈ 2o
7675a1i 9 . . . . . . . . . . . . 13 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) → 1o ∈ 2o)
7771, 76ffvelrnd 5524 . . . . . . . . . . . 12 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) → (𝑓‘1o) ∈ (𝑢 ⊔ 1o))
7877adantr 274 . . . . . . . . . . 11 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inl‘∅)) → (𝑓‘1o) ∈ (𝑢 ⊔ 1o))
7970, 78eqeltrrd 2195 . . . . . . . . . 10 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inl‘∅)) → (inl‘∅) ∈ (𝑢 ⊔ 1o))
8079, 65sylibr 133 . . . . . . . . 9 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inl‘∅)) → ∅ ∈ 𝑢)
8180orcd 707 . . . . . . . 8 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inl‘∅)) → (∅ ∈ 𝑢 ∨ ¬ ∅ ∈ 𝑢))
8281, 68sylibr 133 . . . . . . 7 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inl‘∅)) → DECID ∅ ∈ 𝑢)
83 simp-4r 516 . . . . . . . . . . . 12 ((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) → 𝑓:2oonto→(𝑢 ⊔ 1o))
84 djulcl 6904 . . . . . . . . . . . . 13 (∅ ∈ 𝑢 → (inl‘∅) ∈ (𝑢 ⊔ 1o))
8584adantl 275 . . . . . . . . . . . 12 ((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) → (inl‘∅) ∈ (𝑢 ⊔ 1o))
86 foelrn 5622 . . . . . . . . . . . 12 ((𝑓:2oonto→(𝑢 ⊔ 1o) ∧ (inl‘∅) ∈ (𝑢 ⊔ 1o)) → ∃𝑤 ∈ 2o (inl‘∅) = (𝑓𝑤))
8783, 85, 86syl2anc 408 . . . . . . . . . . 11 ((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) → ∃𝑤 ∈ 2o (inl‘∅) = (𝑓𝑤))
88 simplrr 510 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = ∅) → (inl‘∅) = (𝑓𝑤))
89 simpr 109 . . . . . . . . . . . . . 14 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = ∅) → 𝑤 = ∅)
9089fveq2d 5393 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = ∅) → (𝑓𝑤) = (𝑓‘∅))
91 simp-5r 518 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = ∅) → (𝑓‘∅) = (inr‘∅))
9288, 90, 913eqtrd 2154 . . . . . . . . . . . 12 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = ∅) → (inl‘∅) = (inr‘∅))
93 simplrr 510 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = 1o) → (inl‘∅) = (𝑓𝑤))
94 simpr 109 . . . . . . . . . . . . . 14 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = 1o) → 𝑤 = 1o)
9594fveq2d 5393 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = 1o) → (𝑓𝑤) = (𝑓‘1o))
96 simp-4r 516 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = 1o) → (𝑓‘1o) = (inr‘∅))
9793, 95, 963eqtrd 2154 . . . . . . . . . . . 12 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = 1o) → (inl‘∅) = (inr‘∅))
98 elpri 3520 . . . . . . . . . . . . . 14 (𝑤 ∈ {∅, 1o} → (𝑤 = ∅ ∨ 𝑤 = 1o))
9998, 74eleq2s 2212 . . . . . . . . . . . . 13 (𝑤 ∈ 2o → (𝑤 = ∅ ∨ 𝑤 = 1o))
10099ad2antrl 481 . . . . . . . . . . . 12 (((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) → (𝑤 = ∅ ∨ 𝑤 = 1o))
10192, 97, 100mpjaodan 772 . . . . . . . . . . 11 (((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) → (inl‘∅) = (inr‘∅))
10287, 101rexlimddv 2531 . . . . . . . . . 10 ((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) → (inl‘∅) = (inr‘∅))
103 djune 6931 . . . . . . . . . . . . 13 ((∅ ∈ V ∧ ∅ ∈ V) → (inl‘∅) ≠ (inr‘∅))
10463, 63, 103mp2an 422 . . . . . . . . . . . 12 (inl‘∅) ≠ (inr‘∅)
105104neii 2287 . . . . . . . . . . 11 ¬ (inl‘∅) = (inr‘∅)
106105a1i 9 . . . . . . . . . 10 ((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) → ¬ (inl‘∅) = (inr‘∅))
107102, 106pm2.65da 635 . . . . . . . . 9 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) → ¬ ∅ ∈ 𝑢)
108107olcd 708 . . . . . . . 8 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) → (∅ ∈ 𝑢 ∨ ¬ ∅ ∈ 𝑢))
109108, 68sylibr 133 . . . . . . 7 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) → DECID ∅ ∈ 𝑢)
110 simplr 504 . . . . . . . . . 10 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → 𝑢 ⊆ {∅})
111110, 13sseqtrrdi 3116 . . . . . . . . 9 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → 𝑢 ⊆ 1o)
112111adantr 274 . . . . . . . 8 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) → 𝑢 ⊆ 1o)
113112, 77exmidfodomrlemeldju 7023 . . . . . . 7 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) → ((𝑓‘1o) = (inl‘∅) ∨ (𝑓‘1o) = (inr‘∅)))
11482, 109, 113mpjaodan 772 . . . . . 6 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) → DECID ∅ ∈ 𝑢)
115111, 60exmidfodomrlemeldju 7023 . . . . . 6 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → ((𝑓‘∅) = (inl‘∅) ∨ (𝑓‘∅) = (inr‘∅)))
11669, 114, 115mpjaodan 772 . . . . 5 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → DECID ∅ ∈ 𝑢)
1177, 8, 51, 116exlimdd 1828 . . . 4 ((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) → DECID ∅ ∈ 𝑢)
118117ex 114 . . 3 (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → (𝑢 ⊆ {∅} → DECID ∅ ∈ 𝑢))
119118alrimiv 1830 . 2 (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → ∀𝑢(𝑢 ⊆ {∅} → DECID ∅ ∈ 𝑢))
120 df-exmid 4089 . 2 (EXMID ↔ ∀𝑢(𝑢 ⊆ {∅} → DECID ∅ ∈ 𝑢))
121119, 120sylibr 133 1 (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 682  DECID wdc 804  wal 1314   = wceq 1316  wex 1453  wcel 1465  wne 2285  wrex 2394  Vcvv 2660  wss 3041  c0 3333  {csn 3497  {cpr 3498   class class class wbr 3899  EXMIDwem 4088  suc csuc 4257  ωcom 4474  wf 5089  ontowfo 5091  cfv 5093  1oc1o 6274  2oc2o 6275  cen 6600  cdom 6601  cdju 6890  inlcinl 6898  inrcinr 6899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-exmid 4089  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-1st 6006  df-2nd 6007  df-1o 6281  df-2o 6282  df-er 6397  df-en 6603  df-dom 6604  df-dju 6891  df-inl 6900  df-inr 6901  df-case 6937
This theorem is referenced by:  exmidfodomr  7028
  Copyright terms: Public domain W3C validator