ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemr GIF version

Theorem exmidfodomrlemr 6925
Description: The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. (Contributed by Jim Kingdon, 1-Jul-2022.)
Assertion
Ref Expression
exmidfodomrlemr (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → EXMID)
Distinct variable group:   𝑥,𝑓,𝑦,𝑧

Proof of Theorem exmidfodomrlemr
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1473 . . . . . . . . 9 𝑓(∃𝑧 𝑧𝑦𝑦𝑥)
2 nfe1 1437 . . . . . . . . 9 𝑓𝑓 𝑓:𝑥onto𝑦
31, 2nfim 1516 . . . . . . . 8 𝑓((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦)
43nfal 1520 . . . . . . 7 𝑓𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦)
54nfal 1520 . . . . . 6 𝑓𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦)
6 nfv 1473 . . . . . 6 𝑓 𝑢 ⊆ {∅}
75, 6nfan 1509 . . . . 5 𝑓(∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅})
8 nfv 1473 . . . . 5 𝑓DECID ∅ ∈ 𝑢
9 simpl 108 . . . . . 6 ((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) → ∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦))
10 p0ex 4044 . . . . . . . . . . . 12 {∅} ∈ V
11 ssdomg 6575 . . . . . . . . . . . 12 ({∅} ∈ V → (𝑢 ⊆ {∅} → 𝑢 ≼ {∅}))
1210, 11ax-mp 7 . . . . . . . . . . 11 (𝑢 ⊆ {∅} → 𝑢 ≼ {∅})
13 df1o2 6232 . . . . . . . . . . 11 1o = {∅}
1412, 13syl6breqr 3907 . . . . . . . . . 10 (𝑢 ⊆ {∅} → 𝑢 ≼ 1o)
15 1onn 6319 . . . . . . . . . . 11 1o ∈ ω
16 domrefg 6564 . . . . . . . . . . 11 (1o ∈ ω → 1o ≼ 1o)
1715, 16ax-mp 7 . . . . . . . . . 10 1o ≼ 1o
18 djudom 6863 . . . . . . . . . 10 ((𝑢 ≼ 1o ∧ 1o ≼ 1o) → (𝑢 ⊔ 1o) ≼ (1o ⊔ 1o))
1914, 17, 18sylancl 405 . . . . . . . . 9 (𝑢 ⊆ {∅} → (𝑢 ⊔ 1o) ≼ (1o ⊔ 1o))
20 dju1p1e2 6920 . . . . . . . . 9 (1o ⊔ 1o) ≈ 2o
21 domentr 6588 . . . . . . . . 9 (((𝑢 ⊔ 1o) ≼ (1o ⊔ 1o) ∧ (1o ⊔ 1o) ≈ 2o) → (𝑢 ⊔ 1o) ≼ 2o)
2219, 20, 21sylancl 405 . . . . . . . 8 (𝑢 ⊆ {∅} → (𝑢 ⊔ 1o) ≼ 2o)
2322adantl 272 . . . . . . 7 ((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) → (𝑢 ⊔ 1o) ≼ 2o)
24 0lt1o 6242 . . . . . . . . 9 ∅ ∈ 1o
25 djurcl 6824 . . . . . . . . 9 (∅ ∈ 1o → (inr‘∅) ∈ (𝑢 ⊔ 1o))
2624, 25ax-mp 7 . . . . . . . 8 (inr‘∅) ∈ (𝑢 ⊔ 1o)
27 elex2 2649 . . . . . . . 8 ((inr‘∅) ∈ (𝑢 ⊔ 1o) → ∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o))
2826, 27ax-mp 7 . . . . . . 7 𝑧 𝑧 ∈ (𝑢 ⊔ 1o)
2923, 28jctil 306 . . . . . 6 ((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) → (∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o) ∧ (𝑢 ⊔ 1o) ≼ 2o))
30 vex 2636 . . . . . . . 8 𝑢 ∈ V
31 djuex 6816 . . . . . . . 8 ((𝑢 ∈ V ∧ 1o ∈ ω) → (𝑢 ⊔ 1o) ∈ V)
3230, 15, 31mp2an 418 . . . . . . 7 (𝑢 ⊔ 1o) ∈ V
33 2onn 6320 . . . . . . . 8 2o ∈ ω
34 breq2 3871 . . . . . . . . . . . 12 (𝑥 = 2o → (𝑦𝑥𝑦 ≼ 2o))
3534anbi2d 453 . . . . . . . . . . 11 (𝑥 = 2o → ((∃𝑧 𝑧𝑦𝑦𝑥) ↔ (∃𝑧 𝑧𝑦𝑦 ≼ 2o)))
36 foeq2 5265 . . . . . . . . . . . 12 (𝑥 = 2o → (𝑓:𝑥onto𝑦𝑓:2oonto𝑦))
3736exbidv 1760 . . . . . . . . . . 11 (𝑥 = 2o → (∃𝑓 𝑓:𝑥onto𝑦 ↔ ∃𝑓 𝑓:2oonto𝑦))
3835, 37imbi12d 233 . . . . . . . . . 10 (𝑥 = 2o → (((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ↔ ((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦)))
3938albidv 1759 . . . . . . . . 9 (𝑥 = 2o → (∀𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ↔ ∀𝑦((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦)))
4039spcgv 2720 . . . . . . . 8 (2o ∈ ω → (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → ∀𝑦((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦)))
4133, 40ax-mp 7 . . . . . . 7 (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → ∀𝑦((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦))
42 eleq2 2158 . . . . . . . . . . 11 (𝑦 = (𝑢 ⊔ 1o) → (𝑧𝑦𝑧 ∈ (𝑢 ⊔ 1o)))
4342exbidv 1760 . . . . . . . . . 10 (𝑦 = (𝑢 ⊔ 1o) → (∃𝑧 𝑧𝑦 ↔ ∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o)))
44 breq1 3870 . . . . . . . . . 10 (𝑦 = (𝑢 ⊔ 1o) → (𝑦 ≼ 2o ↔ (𝑢 ⊔ 1o) ≼ 2o))
4543, 44anbi12d 458 . . . . . . . . 9 (𝑦 = (𝑢 ⊔ 1o) → ((∃𝑧 𝑧𝑦𝑦 ≼ 2o) ↔ (∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o) ∧ (𝑢 ⊔ 1o) ≼ 2o)))
46 foeq3 5266 . . . . . . . . . 10 (𝑦 = (𝑢 ⊔ 1o) → (𝑓:2oonto𝑦𝑓:2oonto→(𝑢 ⊔ 1o)))
4746exbidv 1760 . . . . . . . . 9 (𝑦 = (𝑢 ⊔ 1o) → (∃𝑓 𝑓:2oonto𝑦 ↔ ∃𝑓 𝑓:2oonto→(𝑢 ⊔ 1o)))
4845, 47imbi12d 233 . . . . . . . 8 (𝑦 = (𝑢 ⊔ 1o) → (((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦) ↔ ((∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o) ∧ (𝑢 ⊔ 1o) ≼ 2o) → ∃𝑓 𝑓:2oonto→(𝑢 ⊔ 1o))))
4948spcgv 2720 . . . . . . 7 ((𝑢 ⊔ 1o) ∈ V → (∀𝑦((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦) → ((∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o) ∧ (𝑢 ⊔ 1o) ≼ 2o) → ∃𝑓 𝑓:2oonto→(𝑢 ⊔ 1o))))
5032, 41, 49mpsyl 65 . . . . . 6 (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → ((∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o) ∧ (𝑢 ⊔ 1o) ≼ 2o) → ∃𝑓 𝑓:2oonto→(𝑢 ⊔ 1o)))
519, 29, 50sylc 62 . . . . 5 ((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) → ∃𝑓 𝑓:2oonto→(𝑢 ⊔ 1o))
52 simpr 109 . . . . . . . . . 10 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inl‘∅)) → (𝑓‘∅) = (inl‘∅))
53 fof 5268 . . . . . . . . . . . . 13 (𝑓:2oonto→(𝑢 ⊔ 1o) → 𝑓:2o⟶(𝑢 ⊔ 1o))
5453adantl 272 . . . . . . . . . . . 12 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → 𝑓:2o⟶(𝑢 ⊔ 1o))
55 elelsuc 4260 . . . . . . . . . . . . . . 15 (∅ ∈ 1o → ∅ ∈ suc 1o)
5624, 55ax-mp 7 . . . . . . . . . . . . . 14 ∅ ∈ suc 1o
57 df-2o 6220 . . . . . . . . . . . . . 14 2o = suc 1o
5856, 57eleqtrri 2170 . . . . . . . . . . . . 13 ∅ ∈ 2o
5958a1i 9 . . . . . . . . . . . 12 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → ∅ ∈ 2o)
6054, 59ffvelrnd 5474 . . . . . . . . . . 11 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → (𝑓‘∅) ∈ (𝑢 ⊔ 1o))
6160adantr 271 . . . . . . . . . 10 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inl‘∅)) → (𝑓‘∅) ∈ (𝑢 ⊔ 1o))
6252, 61eqeltrrd 2172 . . . . . . . . 9 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inl‘∅)) → (inl‘∅) ∈ (𝑢 ⊔ 1o))
63 0ex 3987 . . . . . . . . . 10 ∅ ∈ V
64 djulclb 6827 . . . . . . . . . 10 (∅ ∈ V → (∅ ∈ 𝑢 ↔ (inl‘∅) ∈ (𝑢 ⊔ 1o)))
6563, 64ax-mp 7 . . . . . . . . 9 (∅ ∈ 𝑢 ↔ (inl‘∅) ∈ (𝑢 ⊔ 1o))
6662, 65sylibr 133 . . . . . . . 8 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inl‘∅)) → ∅ ∈ 𝑢)
6766orcd 690 . . . . . . 7 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inl‘∅)) → (∅ ∈ 𝑢 ∨ ¬ ∅ ∈ 𝑢))
68 df-dc 784 . . . . . . 7 (DECID ∅ ∈ 𝑢 ↔ (∅ ∈ 𝑢 ∨ ¬ ∅ ∈ 𝑢))
6967, 68sylibr 133 . . . . . 6 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inl‘∅)) → DECID ∅ ∈ 𝑢)
70 simpr 109 . . . . . . . . . . 11 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inl‘∅)) → (𝑓‘1o) = (inl‘∅))
7154adantr 271 . . . . . . . . . . . . 13 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) → 𝑓:2o⟶(𝑢 ⊔ 1o))
72 1oex 6227 . . . . . . . . . . . . . . . 16 1o ∈ V
7372prid2 3569 . . . . . . . . . . . . . . 15 1o ∈ {∅, 1o}
74 df2o3 6233 . . . . . . . . . . . . . . 15 2o = {∅, 1o}
7573, 74eleqtrri 2170 . . . . . . . . . . . . . 14 1o ∈ 2o
7675a1i 9 . . . . . . . . . . . . 13 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) → 1o ∈ 2o)
7771, 76ffvelrnd 5474 . . . . . . . . . . . 12 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) → (𝑓‘1o) ∈ (𝑢 ⊔ 1o))
7877adantr 271 . . . . . . . . . . 11 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inl‘∅)) → (𝑓‘1o) ∈ (𝑢 ⊔ 1o))
7970, 78eqeltrrd 2172 . . . . . . . . . 10 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inl‘∅)) → (inl‘∅) ∈ (𝑢 ⊔ 1o))
8079, 65sylibr 133 . . . . . . . . 9 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inl‘∅)) → ∅ ∈ 𝑢)
8180orcd 690 . . . . . . . 8 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inl‘∅)) → (∅ ∈ 𝑢 ∨ ¬ ∅ ∈ 𝑢))
8281, 68sylibr 133 . . . . . . 7 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inl‘∅)) → DECID ∅ ∈ 𝑢)
83 simp-4r 510 . . . . . . . . . . . 12 ((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) → 𝑓:2oonto→(𝑢 ⊔ 1o))
84 djulcl 6823 . . . . . . . . . . . . 13 (∅ ∈ 𝑢 → (inl‘∅) ∈ (𝑢 ⊔ 1o))
8584adantl 272 . . . . . . . . . . . 12 ((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) → (inl‘∅) ∈ (𝑢 ⊔ 1o))
86 foelrn 5570 . . . . . . . . . . . 12 ((𝑓:2oonto→(𝑢 ⊔ 1o) ∧ (inl‘∅) ∈ (𝑢 ⊔ 1o)) → ∃𝑤 ∈ 2o (inl‘∅) = (𝑓𝑤))
8783, 85, 86syl2anc 404 . . . . . . . . . . 11 ((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) → ∃𝑤 ∈ 2o (inl‘∅) = (𝑓𝑤))
88 simplrr 504 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = ∅) → (inl‘∅) = (𝑓𝑤))
89 simpr 109 . . . . . . . . . . . . . 14 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = ∅) → 𝑤 = ∅)
9089fveq2d 5344 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = ∅) → (𝑓𝑤) = (𝑓‘∅))
91 simp-5r 512 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = ∅) → (𝑓‘∅) = (inr‘∅))
9288, 90, 913eqtrd 2131 . . . . . . . . . . . 12 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = ∅) → (inl‘∅) = (inr‘∅))
93 simplrr 504 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = 1o) → (inl‘∅) = (𝑓𝑤))
94 simpr 109 . . . . . . . . . . . . . 14 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = 1o) → 𝑤 = 1o)
9594fveq2d 5344 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = 1o) → (𝑓𝑤) = (𝑓‘1o))
96 simp-4r 510 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = 1o) → (𝑓‘1o) = (inr‘∅))
9793, 95, 963eqtrd 2131 . . . . . . . . . . . 12 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = 1o) → (inl‘∅) = (inr‘∅))
98 elpri 3489 . . . . . . . . . . . . . 14 (𝑤 ∈ {∅, 1o} → (𝑤 = ∅ ∨ 𝑤 = 1o))
9998, 74eleq2s 2189 . . . . . . . . . . . . 13 (𝑤 ∈ 2o → (𝑤 = ∅ ∨ 𝑤 = 1o))
10099ad2antrl 475 . . . . . . . . . . . 12 (((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) → (𝑤 = ∅ ∨ 𝑤 = 1o))
10192, 97, 100mpjaodan 750 . . . . . . . . . . 11 (((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) → (inl‘∅) = (inr‘∅))
10287, 101rexlimddv 2507 . . . . . . . . . 10 ((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) → (inl‘∅) = (inr‘∅))
103 djune 6849 . . . . . . . . . . . . 13 ((∅ ∈ V ∧ ∅ ∈ V) → (inl‘∅) ≠ (inr‘∅))
10463, 63, 103mp2an 418 . . . . . . . . . . . 12 (inl‘∅) ≠ (inr‘∅)
105104neii 2264 . . . . . . . . . . 11 ¬ (inl‘∅) = (inr‘∅)
106105a1i 9 . . . . . . . . . 10 ((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) ∧ ∅ ∈ 𝑢) → ¬ (inl‘∅) = (inr‘∅))
107102, 106pm2.65da 625 . . . . . . . . 9 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) → ¬ ∅ ∈ 𝑢)
108107olcd 691 . . . . . . . 8 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) → (∅ ∈ 𝑢 ∨ ¬ ∅ ∈ 𝑢))
109108, 68sylibr 133 . . . . . . 7 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) ∧ (𝑓‘1o) = (inr‘∅)) → DECID ∅ ∈ 𝑢)
110 simplr 498 . . . . . . . . . 10 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → 𝑢 ⊆ {∅})
111110, 13syl6sseqr 3088 . . . . . . . . 9 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → 𝑢 ⊆ 1o)
112111adantr 271 . . . . . . . 8 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) → 𝑢 ⊆ 1o)
113112, 77exmidfodomrlemeldju 6922 . . . . . . 7 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) → ((𝑓‘1o) = (inl‘∅) ∨ (𝑓‘1o) = (inr‘∅)))
11482, 109, 113mpjaodan 750 . . . . . 6 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = (inr‘∅)) → DECID ∅ ∈ 𝑢)
115111, 60exmidfodomrlemeldju 6922 . . . . . 6 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → ((𝑓‘∅) = (inl‘∅) ∨ (𝑓‘∅) = (inr‘∅)))
11669, 114, 115mpjaodan 750 . . . . 5 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → DECID ∅ ∈ 𝑢)
1177, 8, 51, 116exlimdd 1807 . . . 4 ((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) → DECID ∅ ∈ 𝑢)
118117ex 114 . . 3 (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → (𝑢 ⊆ {∅} → DECID ∅ ∈ 𝑢))
119118alrimiv 1809 . 2 (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → ∀𝑢(𝑢 ⊆ {∅} → DECID ∅ ∈ 𝑢))
120 df-exmid 4051 . 2 (EXMID ↔ ∀𝑢(𝑢 ⊆ {∅} → DECID ∅ ∈ 𝑢))
121119, 120sylibr 133 1 (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 667  DECID wdc 783  wal 1294   = wceq 1296  wex 1433  wcel 1445  wne 2262  wrex 2371  Vcvv 2633  wss 3013  c0 3302  {csn 3466  {cpr 3467   class class class wbr 3867  EXMIDwem 4050  suc csuc 4216  ωcom 4433  wf 5045  ontowfo 5047  cfv 5049  1oc1o 6212  2oc2o 6213  cen 6535  cdom 6536  cdju 6810  inlcinl 6817  inrcinr 6818
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-exmid 4051  df-id 4144  df-iord 4217  df-on 4219  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-1st 5949  df-2nd 5950  df-1o 6219  df-2o 6220  df-er 6332  df-en 6538  df-dom 6539  df-dju 6811  df-inl 6819  df-inr 6820  df-case 6855
This theorem is referenced by:  exmidfodomr  6927
  Copyright terms: Public domain W3C validator