ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidfodomrlemrALT GIF version

Theorem exmidfodomrlemrALT 7282
Description: The existence of a mapping from any set onto any inhabited set that it dominates implies excluded middle. Proposition 1.2 of [PradicBrown2022], p. 2. An alternative proof of exmidfodomrlemr 7281. In particular, this proof uses eldju 7143 instead of djur 7144 and avoids djulclb 7130. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Jim Kingdon, 9-Jul-2022.)
Assertion
Ref Expression
exmidfodomrlemrALT (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → EXMID)
Distinct variable group:   𝑥,𝑓,𝑦,𝑧

Proof of Theorem exmidfodomrlemrALT
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1542 . . . . . . . . 9 𝑓(∃𝑧 𝑧𝑦𝑦𝑥)
2 nfe1 1510 . . . . . . . . 9 𝑓𝑓 𝑓:𝑥onto𝑦
31, 2nfim 1586 . . . . . . . 8 𝑓((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦)
43nfal 1590 . . . . . . 7 𝑓𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦)
54nfal 1590 . . . . . 6 𝑓𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦)
6 nfv 1542 . . . . . 6 𝑓 𝑢 ⊆ {∅}
75, 6nfan 1579 . . . . 5 𝑓(∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅})
8 nfv 1542 . . . . 5 𝑓DECID ∅ ∈ 𝑢
9 simpl 109 . . . . . 6 ((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) → ∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦))
10 p0ex 4222 . . . . . . . . . . . 12 {∅} ∈ V
11 ssdomg 6846 . . . . . . . . . . . 12 ({∅} ∈ V → (𝑢 ⊆ {∅} → 𝑢 ≼ {∅}))
1210, 11ax-mp 5 . . . . . . . . . . 11 (𝑢 ⊆ {∅} → 𝑢 ≼ {∅})
13 df1o2 6496 . . . . . . . . . . 11 1o = {∅}
1412, 13breqtrrdi 4076 . . . . . . . . . 10 (𝑢 ⊆ {∅} → 𝑢 ≼ 1o)
15 1onn 6587 . . . . . . . . . . 11 1o ∈ ω
16 domrefg 6835 . . . . . . . . . . 11 (1o ∈ ω → 1o ≼ 1o)
1715, 16ax-mp 5 . . . . . . . . . 10 1o ≼ 1o
18 djudom 7168 . . . . . . . . . 10 ((𝑢 ≼ 1o ∧ 1o ≼ 1o) → (𝑢 ⊔ 1o) ≼ (1o ⊔ 1o))
1914, 17, 18sylancl 413 . . . . . . . . 9 (𝑢 ⊆ {∅} → (𝑢 ⊔ 1o) ≼ (1o ⊔ 1o))
20 dju1p1e2 7276 . . . . . . . . 9 (1o ⊔ 1o) ≈ 2o
21 domentr 6859 . . . . . . . . 9 (((𝑢 ⊔ 1o) ≼ (1o ⊔ 1o) ∧ (1o ⊔ 1o) ≈ 2o) → (𝑢 ⊔ 1o) ≼ 2o)
2219, 20, 21sylancl 413 . . . . . . . 8 (𝑢 ⊆ {∅} → (𝑢 ⊔ 1o) ≼ 2o)
2322adantl 277 . . . . . . 7 ((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) → (𝑢 ⊔ 1o) ≼ 2o)
24 0lt1o 6507 . . . . . . . . 9 ∅ ∈ 1o
25 djurcl 7127 . . . . . . . . 9 (∅ ∈ 1o → (inr‘∅) ∈ (𝑢 ⊔ 1o))
2624, 25ax-mp 5 . . . . . . . 8 (inr‘∅) ∈ (𝑢 ⊔ 1o)
27 elex2 2779 . . . . . . . 8 ((inr‘∅) ∈ (𝑢 ⊔ 1o) → ∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o))
2826, 27ax-mp 5 . . . . . . 7 𝑧 𝑧 ∈ (𝑢 ⊔ 1o)
2923, 28jctil 312 . . . . . 6 ((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) → (∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o) ∧ (𝑢 ⊔ 1o) ≼ 2o))
30 vex 2766 . . . . . . . 8 𝑢 ∈ V
31 djuex 7118 . . . . . . . 8 ((𝑢 ∈ V ∧ 1o ∈ ω) → (𝑢 ⊔ 1o) ∈ V)
3230, 15, 31mp2an 426 . . . . . . 7 (𝑢 ⊔ 1o) ∈ V
33 2onn 6588 . . . . . . . 8 2o ∈ ω
34 breq2 4038 . . . . . . . . . . . 12 (𝑥 = 2o → (𝑦𝑥𝑦 ≼ 2o))
3534anbi2d 464 . . . . . . . . . . 11 (𝑥 = 2o → ((∃𝑧 𝑧𝑦𝑦𝑥) ↔ (∃𝑧 𝑧𝑦𝑦 ≼ 2o)))
36 foeq2 5480 . . . . . . . . . . . 12 (𝑥 = 2o → (𝑓:𝑥onto𝑦𝑓:2oonto𝑦))
3736exbidv 1839 . . . . . . . . . . 11 (𝑥 = 2o → (∃𝑓 𝑓:𝑥onto𝑦 ↔ ∃𝑓 𝑓:2oonto𝑦))
3835, 37imbi12d 234 . . . . . . . . . 10 (𝑥 = 2o → (((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ↔ ((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦)))
3938albidv 1838 . . . . . . . . 9 (𝑥 = 2o → (∀𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ↔ ∀𝑦((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦)))
4039spcgv 2851 . . . . . . . 8 (2o ∈ ω → (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → ∀𝑦((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦)))
4133, 40ax-mp 5 . . . . . . 7 (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → ∀𝑦((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦))
42 eleq2 2260 . . . . . . . . . . 11 (𝑦 = (𝑢 ⊔ 1o) → (𝑧𝑦𝑧 ∈ (𝑢 ⊔ 1o)))
4342exbidv 1839 . . . . . . . . . 10 (𝑦 = (𝑢 ⊔ 1o) → (∃𝑧 𝑧𝑦 ↔ ∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o)))
44 breq1 4037 . . . . . . . . . 10 (𝑦 = (𝑢 ⊔ 1o) → (𝑦 ≼ 2o ↔ (𝑢 ⊔ 1o) ≼ 2o))
4543, 44anbi12d 473 . . . . . . . . 9 (𝑦 = (𝑢 ⊔ 1o) → ((∃𝑧 𝑧𝑦𝑦 ≼ 2o) ↔ (∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o) ∧ (𝑢 ⊔ 1o) ≼ 2o)))
46 foeq3 5481 . . . . . . . . . 10 (𝑦 = (𝑢 ⊔ 1o) → (𝑓:2oonto𝑦𝑓:2oonto→(𝑢 ⊔ 1o)))
4746exbidv 1839 . . . . . . . . 9 (𝑦 = (𝑢 ⊔ 1o) → (∃𝑓 𝑓:2oonto𝑦 ↔ ∃𝑓 𝑓:2oonto→(𝑢 ⊔ 1o)))
4845, 47imbi12d 234 . . . . . . . 8 (𝑦 = (𝑢 ⊔ 1o) → (((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦) ↔ ((∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o) ∧ (𝑢 ⊔ 1o) ≼ 2o) → ∃𝑓 𝑓:2oonto→(𝑢 ⊔ 1o))))
4948spcgv 2851 . . . . . . 7 ((𝑢 ⊔ 1o) ∈ V → (∀𝑦((∃𝑧 𝑧𝑦𝑦 ≼ 2o) → ∃𝑓 𝑓:2oonto𝑦) → ((∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o) ∧ (𝑢 ⊔ 1o) ≼ 2o) → ∃𝑓 𝑓:2oonto→(𝑢 ⊔ 1o))))
5032, 41, 49mpsyl 65 . . . . . 6 (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → ((∃𝑧 𝑧 ∈ (𝑢 ⊔ 1o) ∧ (𝑢 ⊔ 1o) ≼ 2o) → ∃𝑓 𝑓:2oonto→(𝑢 ⊔ 1o)))
519, 29, 50sylc 62 . . . . 5 ((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) → ∃𝑓 𝑓:2oonto→(𝑢 ⊔ 1o))
52 simprl 529 . . . . . . . 8 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (∅ ∈ 𝑢 ∧ (𝑓‘∅) = ((inl ↾ 𝑢)‘∅))) → ∅ ∈ 𝑢)
5352orcd 734 . . . . . . 7 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (∅ ∈ 𝑢 ∧ (𝑓‘∅) = ((inl ↾ 𝑢)‘∅))) → (∅ ∈ 𝑢 ∨ ¬ ∅ ∈ 𝑢))
54 df-dc 836 . . . . . . 7 (DECID ∅ ∈ 𝑢 ↔ (∅ ∈ 𝑢 ∨ ¬ ∅ ∈ 𝑢))
5553, 54sylibr 134 . . . . . 6 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (∅ ∈ 𝑢 ∧ (𝑓‘∅) = ((inl ↾ 𝑢)‘∅))) → DECID ∅ ∈ 𝑢)
56 simprl 529 . . . . . . . . 9 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (∅ ∈ 𝑢 ∧ (𝑓‘1o) = ((inl ↾ 𝑢)‘∅))) → ∅ ∈ 𝑢)
5756orcd 734 . . . . . . . 8 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (∅ ∈ 𝑢 ∧ (𝑓‘1o) = ((inl ↾ 𝑢)‘∅))) → (∅ ∈ 𝑢 ∨ ¬ ∅ ∈ 𝑢))
5857, 54sylibr 134 . . . . . . 7 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (∅ ∈ 𝑢 ∧ (𝑓‘1o) = ((inl ↾ 𝑢)‘∅))) → DECID ∅ ∈ 𝑢)
59 simp-4r 542 . . . . . . . . . . . 12 ((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (𝑓‘1o) = ((inr ↾ 1o)‘∅)) ∧ ∅ ∈ 𝑢) → 𝑓:2oonto→(𝑢 ⊔ 1o))
60 djulcl 7126 . . . . . . . . . . . . 13 (∅ ∈ 𝑢 → (inl‘∅) ∈ (𝑢 ⊔ 1o))
6160adantl 277 . . . . . . . . . . . 12 ((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (𝑓‘1o) = ((inr ↾ 1o)‘∅)) ∧ ∅ ∈ 𝑢) → (inl‘∅) ∈ (𝑢 ⊔ 1o))
62 foelrn 5802 . . . . . . . . . . . 12 ((𝑓:2oonto→(𝑢 ⊔ 1o) ∧ (inl‘∅) ∈ (𝑢 ⊔ 1o)) → ∃𝑤 ∈ 2o (inl‘∅) = (𝑓𝑤))
6359, 61, 62syl2anc 411 . . . . . . . . . . 11 ((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (𝑓‘1o) = ((inr ↾ 1o)‘∅)) ∧ ∅ ∈ 𝑢) → ∃𝑤 ∈ 2o (inl‘∅) = (𝑓𝑤))
64 simprr 531 . . . . . . . . . . . . . . 15 (((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (𝑓‘1o) = ((inr ↾ 1o)‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) → (inl‘∅) = (𝑓𝑤))
65 fvres 5585 . . . . . . . . . . . . . . . . 17 (∅ ∈ 𝑢 → ((inl ↾ 𝑢)‘∅) = (inl‘∅))
6665eqeq1d 2205 . . . . . . . . . . . . . . . 16 (∅ ∈ 𝑢 → (((inl ↾ 𝑢)‘∅) = (𝑓𝑤) ↔ (inl‘∅) = (𝑓𝑤)))
6766ad2antlr 489 . . . . . . . . . . . . . . 15 (((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (𝑓‘1o) = ((inr ↾ 1o)‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) → (((inl ↾ 𝑢)‘∅) = (𝑓𝑤) ↔ (inl‘∅) = (𝑓𝑤)))
6864, 67mpbird 167 . . . . . . . . . . . . . 14 (((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (𝑓‘1o) = ((inr ↾ 1o)‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) → ((inl ↾ 𝑢)‘∅) = (𝑓𝑤))
6968adantr 276 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (𝑓‘1o) = ((inr ↾ 1o)‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = ∅) → ((inl ↾ 𝑢)‘∅) = (𝑓𝑤))
70 simpr 110 . . . . . . . . . . . . . 14 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (𝑓‘1o) = ((inr ↾ 1o)‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = ∅) → 𝑤 = ∅)
7170fveq2d 5565 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (𝑓‘1o) = ((inr ↾ 1o)‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = ∅) → (𝑓𝑤) = (𝑓‘∅))
72 simp-5r 544 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (𝑓‘1o) = ((inr ↾ 1o)‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = ∅) → (𝑓‘∅) = ((inr ↾ 1o)‘∅))
7369, 71, 723eqtrd 2233 . . . . . . . . . . . 12 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (𝑓‘1o) = ((inr ↾ 1o)‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = ∅) → ((inl ↾ 𝑢)‘∅) = ((inr ↾ 1o)‘∅))
7468adantr 276 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (𝑓‘1o) = ((inr ↾ 1o)‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = 1o) → ((inl ↾ 𝑢)‘∅) = (𝑓𝑤))
75 simpr 110 . . . . . . . . . . . . . 14 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (𝑓‘1o) = ((inr ↾ 1o)‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = 1o) → 𝑤 = 1o)
7675fveq2d 5565 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (𝑓‘1o) = ((inr ↾ 1o)‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = 1o) → (𝑓𝑤) = (𝑓‘1o))
77 simp-4r 542 . . . . . . . . . . . . 13 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (𝑓‘1o) = ((inr ↾ 1o)‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = 1o) → (𝑓‘1o) = ((inr ↾ 1o)‘∅))
7874, 76, 773eqtrd 2233 . . . . . . . . . . . 12 ((((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (𝑓‘1o) = ((inr ↾ 1o)‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) ∧ 𝑤 = 1o) → ((inl ↾ 𝑢)‘∅) = ((inr ↾ 1o)‘∅))
79 elpri 3646 . . . . . . . . . . . . . 14 (𝑤 ∈ {∅, 1o} → (𝑤 = ∅ ∨ 𝑤 = 1o))
80 df2o3 6497 . . . . . . . . . . . . . 14 2o = {∅, 1o}
8179, 80eleq2s 2291 . . . . . . . . . . . . 13 (𝑤 ∈ 2o → (𝑤 = ∅ ∨ 𝑤 = 1o))
8281ad2antrl 490 . . . . . . . . . . . 12 (((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (𝑓‘1o) = ((inr ↾ 1o)‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) → (𝑤 = ∅ ∨ 𝑤 = 1o))
8373, 78, 82mpjaodan 799 . . . . . . . . . . 11 (((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (𝑓‘1o) = ((inr ↾ 1o)‘∅)) ∧ ∅ ∈ 𝑢) ∧ (𝑤 ∈ 2o ∧ (inl‘∅) = (𝑓𝑤))) → ((inl ↾ 𝑢)‘∅) = ((inr ↾ 1o)‘∅))
8463, 83rexlimddv 2619 . . . . . . . . . 10 ((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (𝑓‘1o) = ((inr ↾ 1o)‘∅)) ∧ ∅ ∈ 𝑢) → ((inl ↾ 𝑢)‘∅) = ((inr ↾ 1o)‘∅))
85 0ex 4161 . . . . . . . . . . . . . 14 ∅ ∈ V
86 djune 7153 . . . . . . . . . . . . . 14 ((∅ ∈ V ∧ ∅ ∈ V) → (inl‘∅) ≠ (inr‘∅))
8785, 85, 86mp2an 426 . . . . . . . . . . . . 13 (inl‘∅) ≠ (inr‘∅)
8887neii 2369 . . . . . . . . . . . 12 ¬ (inl‘∅) = (inr‘∅)
89 fvres 5585 . . . . . . . . . . . . . . 15 (∅ ∈ 1o → ((inr ↾ 1o)‘∅) = (inr‘∅))
9024, 89ax-mp 5 . . . . . . . . . . . . . 14 ((inr ↾ 1o)‘∅) = (inr‘∅)
9190a1i 9 . . . . . . . . . . . . 13 (∅ ∈ 𝑢 → ((inr ↾ 1o)‘∅) = (inr‘∅))
9265, 91eqeq12d 2211 . . . . . . . . . . . 12 (∅ ∈ 𝑢 → (((inl ↾ 𝑢)‘∅) = ((inr ↾ 1o)‘∅) ↔ (inl‘∅) = (inr‘∅)))
9388, 92mtbiri 676 . . . . . . . . . . 11 (∅ ∈ 𝑢 → ¬ ((inl ↾ 𝑢)‘∅) = ((inr ↾ 1o)‘∅))
9493adantl 277 . . . . . . . . . 10 ((((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (𝑓‘1o) = ((inr ↾ 1o)‘∅)) ∧ ∅ ∈ 𝑢) → ¬ ((inl ↾ 𝑢)‘∅) = ((inr ↾ 1o)‘∅))
9584, 94pm2.65da 662 . . . . . . . . 9 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (𝑓‘1o) = ((inr ↾ 1o)‘∅)) → ¬ ∅ ∈ 𝑢)
9695olcd 735 . . . . . . . 8 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (𝑓‘1o) = ((inr ↾ 1o)‘∅)) → (∅ ∈ 𝑢 ∨ ¬ ∅ ∈ 𝑢))
9796, 54sylibr 134 . . . . . . 7 (((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) ∧ (𝑓‘1o) = ((inr ↾ 1o)‘∅)) → DECID ∅ ∈ 𝑢)
98 simplr 528 . . . . . . . . . 10 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → 𝑢 ⊆ {∅})
9998, 13sseqtrrdi 3233 . . . . . . . . 9 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → 𝑢 ⊆ 1o)
10099adantr 276 . . . . . . . 8 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) → 𝑢 ⊆ 1o)
101 fof 5483 . . . . . . . . . . 11 (𝑓:2oonto→(𝑢 ⊔ 1o) → 𝑓:2o⟶(𝑢 ⊔ 1o))
102101adantl 277 . . . . . . . . . 10 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → 𝑓:2o⟶(𝑢 ⊔ 1o))
103102adantr 276 . . . . . . . . 9 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) → 𝑓:2o⟶(𝑢 ⊔ 1o))
104 1oex 6491 . . . . . . . . . . . 12 1o ∈ V
105104prid2 3730 . . . . . . . . . . 11 1o ∈ {∅, 1o}
106105, 80eleqtrri 2272 . . . . . . . . . 10 1o ∈ 2o
107106a1i 9 . . . . . . . . 9 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) → 1o ∈ 2o)
108103, 107ffvelcdmd 5701 . . . . . . . 8 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) → (𝑓‘1o) ∈ (𝑢 ⊔ 1o))
109100, 108exmidfodomrlemreseldju 7279 . . . . . . 7 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) → ((∅ ∈ 𝑢 ∧ (𝑓‘1o) = ((inl ↾ 𝑢)‘∅)) ∨ (𝑓‘1o) = ((inr ↾ 1o)‘∅)))
11058, 97, 109mpjaodan 799 . . . . . 6 ((((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) ∧ (𝑓‘∅) = ((inr ↾ 1o)‘∅)) → DECID ∅ ∈ 𝑢)
111 elelsuc 4445 . . . . . . . . . . 11 (∅ ∈ 1o → ∅ ∈ suc 1o)
11224, 111ax-mp 5 . . . . . . . . . 10 ∅ ∈ suc 1o
113 df-2o 6484 . . . . . . . . . 10 2o = suc 1o
114112, 113eleqtrri 2272 . . . . . . . . 9 ∅ ∈ 2o
115114a1i 9 . . . . . . . 8 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → ∅ ∈ 2o)
116102, 115ffvelcdmd 5701 . . . . . . 7 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → (𝑓‘∅) ∈ (𝑢 ⊔ 1o))
11799, 116exmidfodomrlemreseldju 7279 . . . . . 6 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → ((∅ ∈ 𝑢 ∧ (𝑓‘∅) = ((inl ↾ 𝑢)‘∅)) ∨ (𝑓‘∅) = ((inr ↾ 1o)‘∅)))
11855, 110, 117mpjaodan 799 . . . . 5 (((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) ∧ 𝑓:2oonto→(𝑢 ⊔ 1o)) → DECID ∅ ∈ 𝑢)
1197, 8, 51, 118exlimdd 1886 . . . 4 ((∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) ∧ 𝑢 ⊆ {∅}) → DECID ∅ ∈ 𝑢)
120119ex 115 . . 3 (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → (𝑢 ⊆ {∅} → DECID ∅ ∈ 𝑢))
121120alrimiv 1888 . 2 (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → ∀𝑢(𝑢 ⊆ {∅} → DECID ∅ ∈ 𝑢))
122 df-exmid 4229 . 2 (EXMID ↔ ∀𝑢(𝑢 ⊆ {∅} → DECID ∅ ∈ 𝑢))
123121, 122sylibr 134 1 (∀𝑥𝑦((∃𝑧 𝑧𝑦𝑦𝑥) → ∃𝑓 𝑓:𝑥onto𝑦) → EXMID)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  wal 1362   = wceq 1364  wex 1506  wcel 2167  wne 2367  wrex 2476  Vcvv 2763  wss 3157  c0 3451  {csn 3623  {cpr 3624   class class class wbr 4034  EXMIDwem 4228  suc csuc 4401  ωcom 4627  cres 4666  wf 5255  ontowfo 5257  cfv 5259  1oc1o 6476  2oc2o 6477  cen 6806  cdom 6807  cdju 7112  inlcinl 7120  inrcinr 7121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-exmid 4229  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-1st 6207  df-2nd 6208  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-dom 6810  df-dju 7113  df-inl 7122  df-inr 7123  df-case 7159
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator