Step | Hyp | Ref
| Expression |
1 | | nfv 1528 |
. . . . . . . . 9
β’
β²π(βπ§ π§ β π¦ β§ π¦ βΌ π₯) |
2 | | nfe1 1496 |
. . . . . . . . 9
β’
β²πβπ π:π₯βontoβπ¦ |
3 | 1, 2 | nfim 1572 |
. . . . . . . 8
β’
β²π((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) |
4 | 3 | nfal 1576 |
. . . . . . 7
β’
β²πβπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) |
5 | 4 | nfal 1576 |
. . . . . 6
β’
β²πβπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) |
6 | | nfv 1528 |
. . . . . 6
β’
β²π π’ β
{β
} |
7 | 5, 6 | nfan 1565 |
. . . . 5
β’
β²π(βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) |
8 | | nfv 1528 |
. . . . 5
β’
β²πDECID β
β π’ |
9 | | simpl 109 |
. . . . . 6
β’
((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦)) |
10 | | p0ex 4190 |
. . . . . . . . . . . 12
β’ {β
}
β V |
11 | | ssdomg 6780 |
. . . . . . . . . . . 12
β’
({β
} β V β (π’ β {β
} β π’ βΌ {β
})) |
12 | 10, 11 | ax-mp 5 |
. . . . . . . . . . 11
β’ (π’ β {β
} β π’ βΌ
{β
}) |
13 | | df1o2 6432 |
. . . . . . . . . . 11
β’
1o = {β
} |
14 | 12, 13 | breqtrrdi 4047 |
. . . . . . . . . 10
β’ (π’ β {β
} β π’ βΌ
1o) |
15 | | 1onn 6523 |
. . . . . . . . . . 11
β’
1o β Ο |
16 | | domrefg 6769 |
. . . . . . . . . . 11
β’
(1o β Ο β 1o βΌ
1o) |
17 | 15, 16 | ax-mp 5 |
. . . . . . . . . 10
β’
1o βΌ 1o |
18 | | djudom 7094 |
. . . . . . . . . 10
β’ ((π’ βΌ 1o β§
1o βΌ 1o) β (π’ β 1o) βΌ
(1o β 1o)) |
19 | 14, 17, 18 | sylancl 413 |
. . . . . . . . 9
β’ (π’ β {β
} β (π’ β 1o) βΌ
(1o β 1o)) |
20 | | dju1p1e2 7198 |
. . . . . . . . 9
β’
(1o β 1o) β
2o |
21 | | domentr 6793 |
. . . . . . . . 9
β’ (((π’ β 1o) βΌ
(1o β 1o) β§ (1o β
1o) β 2o) β (π’ β 1o) βΌ
2o) |
22 | 19, 20, 21 | sylancl 413 |
. . . . . . . 8
β’ (π’ β {β
} β (π’ β 1o) βΌ
2o) |
23 | 22 | adantl 277 |
. . . . . . 7
β’
((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β (π’ β 1o) βΌ
2o) |
24 | | 0lt1o 6443 |
. . . . . . . . 9
β’ β
β 1o |
25 | | djurcl 7053 |
. . . . . . . . 9
β’ (β
β 1o β (inrββ
) β (π’ β 1o)) |
26 | 24, 25 | ax-mp 5 |
. . . . . . . 8
β’
(inrββ
) β (π’ β 1o) |
27 | | elex2 2755 |
. . . . . . . 8
β’
((inrββ
) β (π’ β 1o) β βπ§ π§ β (π’ β 1o)) |
28 | 26, 27 | ax-mp 5 |
. . . . . . 7
β’
βπ§ π§ β (π’ β 1o) |
29 | 23, 28 | jctil 312 |
. . . . . 6
β’
((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β (βπ§ π§ β (π’ β 1o) β§ (π’ β 1o) βΌ
2o)) |
30 | | vex 2742 |
. . . . . . . 8
β’ π’ β V |
31 | | djuex 7044 |
. . . . . . . 8
β’ ((π’ β V β§ 1o
β Ο) β (π’
β 1o) β V) |
32 | 30, 15, 31 | mp2an 426 |
. . . . . . 7
β’ (π’ β 1o) β
V |
33 | | 2onn 6524 |
. . . . . . . 8
β’
2o β Ο |
34 | | breq2 4009 |
. . . . . . . . . . . 12
β’ (π₯ = 2o β (π¦ βΌ π₯ β π¦ βΌ 2o)) |
35 | 34 | anbi2d 464 |
. . . . . . . . . . 11
β’ (π₯ = 2o β
((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β (βπ§ π§ β π¦ β§ π¦ βΌ 2o))) |
36 | | foeq2 5437 |
. . . . . . . . . . . 12
β’ (π₯ = 2o β (π:π₯βontoβπ¦ β π:2oβontoβπ¦)) |
37 | 36 | exbidv 1825 |
. . . . . . . . . . 11
β’ (π₯ = 2o β
(βπ π:π₯βontoβπ¦ β βπ π:2oβontoβπ¦)) |
38 | 35, 37 | imbi12d 234 |
. . . . . . . . . 10
β’ (π₯ = 2o β
(((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β ((βπ§ π§ β π¦ β§ π¦ βΌ 2o) β βπ π:2oβontoβπ¦))) |
39 | 38 | albidv 1824 |
. . . . . . . . 9
β’ (π₯ = 2o β
(βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ 2o) β βπ π:2oβontoβπ¦))) |
40 | 39 | spcgv 2826 |
. . . . . . . 8
β’
(2o β Ο β (βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ 2o) β βπ π:2oβontoβπ¦))) |
41 | 33, 40 | ax-mp 5 |
. . . . . . 7
β’
(βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ 2o) β βπ π:2oβontoβπ¦)) |
42 | | eleq2 2241 |
. . . . . . . . . . 11
β’ (π¦ = (π’ β 1o) β (π§ β π¦ β π§ β (π’ β 1o))) |
43 | 42 | exbidv 1825 |
. . . . . . . . . 10
β’ (π¦ = (π’ β 1o) β (βπ§ π§ β π¦ β βπ§ π§ β (π’ β 1o))) |
44 | | breq1 4008 |
. . . . . . . . . 10
β’ (π¦ = (π’ β 1o) β (π¦ βΌ 2o β
(π’ β 1o)
βΌ 2o)) |
45 | 43, 44 | anbi12d 473 |
. . . . . . . . 9
β’ (π¦ = (π’ β 1o) β
((βπ§ π§ β π¦ β§ π¦ βΌ 2o) β (βπ§ π§ β (π’ β 1o) β§ (π’ β 1o) βΌ
2o))) |
46 | | foeq3 5438 |
. . . . . . . . . 10
β’ (π¦ = (π’ β 1o) β (π:2oβontoβπ¦ β π:2oβontoβ(π’ β 1o))) |
47 | 46 | exbidv 1825 |
. . . . . . . . 9
β’ (π¦ = (π’ β 1o) β (βπ π:2oβontoβπ¦ β βπ π:2oβontoβ(π’ β 1o))) |
48 | 45, 47 | imbi12d 234 |
. . . . . . . 8
β’ (π¦ = (π’ β 1o) β
(((βπ§ π§ β π¦ β§ π¦ βΌ 2o) β βπ π:2oβontoβπ¦) β ((βπ§ π§ β (π’ β 1o) β§ (π’ β 1o) βΌ
2o) β βπ π:2oβontoβ(π’ β 1o)))) |
49 | 48 | spcgv 2826 |
. . . . . . 7
β’ ((π’ β 1o) β
V β (βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ 2o) β βπ π:2oβontoβπ¦) β ((βπ§ π§ β (π’ β 1o) β§ (π’ β 1o) βΌ
2o) β βπ π:2oβontoβ(π’ β 1o)))) |
50 | 32, 41, 49 | mpsyl 65 |
. . . . . 6
β’
(βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β ((βπ§ π§ β (π’ β 1o) β§ (π’ β 1o) βΌ
2o) β βπ π:2oβontoβ(π’ β 1o))) |
51 | 9, 29, 50 | sylc 62 |
. . . . 5
β’
((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β βπ π:2oβontoβ(π’ β 1o)) |
52 | | simprl 529 |
. . . . . . . 8
β’
((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (β
β π’ β§ (πββ
) = ((inl βΎ
π’)ββ
))) β
β
β π’) |
53 | 52 | orcd 733 |
. . . . . . 7
β’
((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (β
β π’ β§ (πββ
) = ((inl βΎ
π’)ββ
))) β
(β
β π’ β¨
Β¬ β
β π’)) |
54 | | df-dc 835 |
. . . . . . 7
β’
(DECID β
β π’ β (β
β π’ β¨ Β¬ β
β π’)) |
55 | 53, 54 | sylibr 134 |
. . . . . 6
β’
((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (β
β π’ β§ (πββ
) = ((inl βΎ
π’)ββ
))) β
DECID β
β π’) |
56 | | simprl 529 |
. . . . . . . . 9
β’
(((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (β
β π’ β§ (πβ1o) = ((inl βΎ π’)ββ
))) β
β
β π’) |
57 | 56 | orcd 733 |
. . . . . . . 8
β’
(((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (β
β π’ β§ (πβ1o) = ((inl βΎ π’)ββ
))) β
(β
β π’ β¨
Β¬ β
β π’)) |
58 | 57, 54 | sylibr 134 |
. . . . . . 7
β’
(((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (β
β π’ β§ (πβ1o) = ((inl βΎ π’)ββ
))) β
DECID β
β π’) |
59 | | simp-4r 542 |
. . . . . . . . . . . 12
β’
((((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (πβ1o) = ((inr βΎ
1o)ββ
)) β§ β
β π’) β π:2oβontoβ(π’ β 1o)) |
60 | | djulcl 7052 |
. . . . . . . . . . . . 13
β’ (β
β π’ β
(inlββ
) β (π’ β 1o)) |
61 | 60 | adantl 277 |
. . . . . . . . . . . 12
β’
((((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (πβ1o) = ((inr βΎ
1o)ββ
)) β§ β
β π’) β (inlββ
) β (π’ β
1o)) |
62 | | foelrn 5755 |
. . . . . . . . . . . 12
β’ ((π:2oβontoβ(π’ β 1o) β§
(inlββ
) β (π’ β 1o)) β βπ€ β 2o
(inlββ
) = (πβπ€)) |
63 | 59, 61, 62 | syl2anc 411 |
. . . . . . . . . . 11
β’
((((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (πβ1o) = ((inr βΎ
1o)ββ
)) β§ β
β π’) β βπ€ β 2o (inlββ
) =
(πβπ€)) |
64 | | simprr 531 |
. . . . . . . . . . . . . . 15
β’
(((((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (πβ1o) = ((inr βΎ
1o)ββ
)) β§ β
β π’) β§ (π€ β 2o β§
(inlββ
) = (πβπ€))) β (inlββ
) = (πβπ€)) |
65 | | fvres 5541 |
. . . . . . . . . . . . . . . . 17
β’ (β
β π’ β ((inl
βΎ π’)ββ
) =
(inlββ
)) |
66 | 65 | eqeq1d 2186 |
. . . . . . . . . . . . . . . 16
β’ (β
β π’ β (((inl
βΎ π’)ββ
) =
(πβπ€) β (inlββ
) = (πβπ€))) |
67 | 66 | ad2antlr 489 |
. . . . . . . . . . . . . . 15
β’
(((((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (πβ1o) = ((inr βΎ
1o)ββ
)) β§ β
β π’) β§ (π€ β 2o β§
(inlββ
) = (πβπ€))) β (((inl βΎ π’)ββ
) = (πβπ€) β (inlββ
) = (πβπ€))) |
68 | 64, 67 | mpbird 167 |
. . . . . . . . . . . . . 14
β’
(((((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (πβ1o) = ((inr βΎ
1o)ββ
)) β§ β
β π’) β§ (π€ β 2o β§
(inlββ
) = (πβπ€))) β ((inl βΎ π’)ββ
) = (πβπ€)) |
69 | 68 | adantr 276 |
. . . . . . . . . . . . 13
β’
((((((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (πβ1o) = ((inr βΎ
1o)ββ
)) β§ β
β π’) β§ (π€ β 2o β§
(inlββ
) = (πβπ€))) β§ π€ = β
) β ((inl βΎ π’)ββ
) = (πβπ€)) |
70 | | simpr 110 |
. . . . . . . . . . . . . 14
β’
((((((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (πβ1o) = ((inr βΎ
1o)ββ
)) β§ β
β π’) β§ (π€ β 2o β§
(inlββ
) = (πβπ€))) β§ π€ = β
) β π€ = β
) |
71 | 70 | fveq2d 5521 |
. . . . . . . . . . . . 13
β’
((((((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (πβ1o) = ((inr βΎ
1o)ββ
)) β§ β
β π’) β§ (π€ β 2o β§
(inlββ
) = (πβπ€))) β§ π€ = β
) β (πβπ€) = (πββ
)) |
72 | | simp-5r 544 |
. . . . . . . . . . . . 13
β’
((((((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (πβ1o) = ((inr βΎ
1o)ββ
)) β§ β
β π’) β§ (π€ β 2o β§
(inlββ
) = (πβπ€))) β§ π€ = β
) β (πββ
) = ((inr βΎ
1o)ββ
)) |
73 | 69, 71, 72 | 3eqtrd 2214 |
. . . . . . . . . . . 12
β’
((((((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (πβ1o) = ((inr βΎ
1o)ββ
)) β§ β
β π’) β§ (π€ β 2o β§
(inlββ
) = (πβπ€))) β§ π€ = β
) β ((inl βΎ π’)ββ
) = ((inr βΎ
1o)ββ
)) |
74 | 68 | adantr 276 |
. . . . . . . . . . . . 13
β’
((((((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (πβ1o) = ((inr βΎ
1o)ββ
)) β§ β
β π’) β§ (π€ β 2o β§
(inlββ
) = (πβπ€))) β§ π€ = 1o) β ((inl βΎ π’)ββ
) = (πβπ€)) |
75 | | simpr 110 |
. . . . . . . . . . . . . 14
β’
((((((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (πβ1o) = ((inr βΎ
1o)ββ
)) β§ β
β π’) β§ (π€ β 2o β§
(inlββ
) = (πβπ€))) β§ π€ = 1o) β π€ = 1o) |
76 | 75 | fveq2d 5521 |
. . . . . . . . . . . . 13
β’
((((((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (πβ1o) = ((inr βΎ
1o)ββ
)) β§ β
β π’) β§ (π€ β 2o β§
(inlββ
) = (πβπ€))) β§ π€ = 1o) β (πβπ€) = (πβ1o)) |
77 | | simp-4r 542 |
. . . . . . . . . . . . 13
β’
((((((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (πβ1o) = ((inr βΎ
1o)ββ
)) β§ β
β π’) β§ (π€ β 2o β§
(inlββ
) = (πβπ€))) β§ π€ = 1o) β (πβ1o) = ((inr βΎ
1o)ββ
)) |
78 | 74, 76, 77 | 3eqtrd 2214 |
. . . . . . . . . . . 12
β’
((((((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (πβ1o) = ((inr βΎ
1o)ββ
)) β§ β
β π’) β§ (π€ β 2o β§
(inlββ
) = (πβπ€))) β§ π€ = 1o) β ((inl βΎ π’)ββ
) = ((inr βΎ
1o)ββ
)) |
79 | | elpri 3617 |
. . . . . . . . . . . . . 14
β’ (π€ β {β
, 1o}
β (π€ = β
β¨
π€ =
1o)) |
80 | | df2o3 6433 |
. . . . . . . . . . . . . 14
β’
2o = {β
, 1o} |
81 | 79, 80 | eleq2s 2272 |
. . . . . . . . . . . . 13
β’ (π€ β 2o β
(π€ = β
β¨ π€ =
1o)) |
82 | 81 | ad2antrl 490 |
. . . . . . . . . . . 12
β’
(((((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (πβ1o) = ((inr βΎ
1o)ββ
)) β§ β
β π’) β§ (π€ β 2o β§
(inlββ
) = (πβπ€))) β (π€ = β
β¨ π€ = 1o)) |
83 | 73, 78, 82 | mpjaodan 798 |
. . . . . . . . . . 11
β’
(((((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (πβ1o) = ((inr βΎ
1o)ββ
)) β§ β
β π’) β§ (π€ β 2o β§
(inlββ
) = (πβπ€))) β ((inl βΎ π’)ββ
) = ((inr βΎ
1o)ββ
)) |
84 | 63, 83 | rexlimddv 2599 |
. . . . . . . . . 10
β’
((((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (πβ1o) = ((inr βΎ
1o)ββ
)) β§ β
β π’) β ((inl βΎ π’)ββ
) = ((inr βΎ
1o)ββ
)) |
85 | | 0ex 4132 |
. . . . . . . . . . . . . 14
β’ β
β V |
86 | | djune 7079 |
. . . . . . . . . . . . . 14
β’ ((β
β V β§ β
β V) β (inlββ
) β
(inrββ
)) |
87 | 85, 85, 86 | mp2an 426 |
. . . . . . . . . . . . 13
β’
(inlββ
) β (inrββ
) |
88 | 87 | neii 2349 |
. . . . . . . . . . . 12
β’ Β¬
(inlββ
) = (inrββ
) |
89 | | fvres 5541 |
. . . . . . . . . . . . . . 15
β’ (β
β 1o β ((inr βΎ 1o)ββ
) =
(inrββ
)) |
90 | 24, 89 | ax-mp 5 |
. . . . . . . . . . . . . 14
β’ ((inr
βΎ 1o)ββ
) = (inrββ
) |
91 | 90 | a1i 9 |
. . . . . . . . . . . . 13
β’ (β
β π’ β ((inr
βΎ 1o)ββ
) = (inrββ
)) |
92 | 65, 91 | eqeq12d 2192 |
. . . . . . . . . . . 12
β’ (β
β π’ β (((inl
βΎ π’)ββ
) =
((inr βΎ 1o)ββ
) β (inlββ
) =
(inrββ
))) |
93 | 88, 92 | mtbiri 675 |
. . . . . . . . . . 11
β’ (β
β π’ β Β¬ ((inl
βΎ π’)ββ
) =
((inr βΎ 1o)ββ
)) |
94 | 93 | adantl 277 |
. . . . . . . . . 10
β’
((((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (πβ1o) = ((inr βΎ
1o)ββ
)) β§ β
β π’) β Β¬ ((inl βΎ π’)ββ
) = ((inr βΎ
1o)ββ
)) |
95 | 84, 94 | pm2.65da 661 |
. . . . . . . . 9
β’
(((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (πβ1o) = ((inr βΎ
1o)ββ
)) β Β¬ β
β π’) |
96 | 95 | olcd 734 |
. . . . . . . 8
β’
(((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (πβ1o) = ((inr βΎ
1o)ββ
)) β (β
β π’ β¨ Β¬ β
β π’)) |
97 | 96, 54 | sylibr 134 |
. . . . . . 7
β’
(((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β§ (πβ1o) = ((inr βΎ
1o)ββ
)) β DECID β
β π’) |
98 | | simplr 528 |
. . . . . . . . . 10
β’
(((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β π’ β
{β
}) |
99 | 98, 13 | sseqtrrdi 3206 |
. . . . . . . . 9
β’
(((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β π’ β
1o) |
100 | 99 | adantr 276 |
. . . . . . . 8
β’
((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β π’ β 1o) |
101 | | fof 5440 |
. . . . . . . . . . 11
β’ (π:2oβontoβ(π’ β 1o) β π:2oβΆ(π’ β
1o)) |
102 | 101 | adantl 277 |
. . . . . . . . . 10
β’
(((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β π:2oβΆ(π’ β
1o)) |
103 | 102 | adantr 276 |
. . . . . . . . 9
β’
((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β π:2oβΆ(π’ β 1o)) |
104 | | 1oex 6427 |
. . . . . . . . . . . 12
β’
1o β V |
105 | 104 | prid2 3701 |
. . . . . . . . . . 11
β’
1o β {β
, 1o} |
106 | 105, 80 | eleqtrri 2253 |
. . . . . . . . . 10
β’
1o β 2o |
107 | 106 | a1i 9 |
. . . . . . . . 9
β’
((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β 1o β
2o) |
108 | 103, 107 | ffvelcdmd 5654 |
. . . . . . . 8
β’
((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β (πβ1o) β (π’ β
1o)) |
109 | 100, 108 | exmidfodomrlemreseldju 7201 |
. . . . . . 7
β’
((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β ((β
β π’ β§ (πβ1o) = ((inl βΎ π’)ββ
)) β¨ (πβ1o) = ((inr
βΎ 1o)ββ
))) |
110 | 58, 97, 109 | mpjaodan 798 |
. . . . . 6
β’
((((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β§ (πββ
) = ((inr βΎ
1o)ββ
)) β DECID β
β π’) |
111 | | elelsuc 4411 |
. . . . . . . . . . 11
β’ (β
β 1o β β
β suc 1o) |
112 | 24, 111 | ax-mp 5 |
. . . . . . . . . 10
β’ β
β suc 1o |
113 | | df-2o 6420 |
. . . . . . . . . 10
β’
2o = suc 1o |
114 | 112, 113 | eleqtrri 2253 |
. . . . . . . . 9
β’ β
β 2o |
115 | 114 | a1i 9 |
. . . . . . . 8
β’
(((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β β
β 2o) |
116 | 102, 115 | ffvelcdmd 5654 |
. . . . . . 7
β’
(((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β (πββ
) β (π’ β
1o)) |
117 | 99, 116 | exmidfodomrlemreseldju 7201 |
. . . . . 6
β’
(((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β ((β
β π’ β§ (πββ
) = ((inl βΎ
π’)ββ
)) β¨
(πββ
) = ((inr
βΎ 1o)ββ
))) |
118 | 55, 110, 117 | mpjaodan 798 |
. . . . 5
β’
(((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β§ π:2oβontoβ(π’ β 1o)) β
DECID β
β π’) |
119 | 7, 8, 51, 118 | exlimdd 1872 |
. . . 4
β’
((βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β§ π’ β {β
}) β
DECID β
β π’) |
120 | 119 | ex 115 |
. . 3
β’
(βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β (π’ β {β
} β
DECID β
β π’)) |
121 | 120 | alrimiv 1874 |
. 2
β’
(βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β βπ’(π’ β {β
} β
DECID β
β π’)) |
122 | | df-exmid 4197 |
. 2
β’
(EXMID β βπ’(π’ β {β
} β
DECID β
β π’)) |
123 | 121, 122 | sylibr 134 |
1
β’
(βπ₯βπ¦((βπ§ π§ β π¦ β§ π¦ βΌ π₯) β βπ π:π₯βontoβπ¦) β
EXMID) |