ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemm GIF version

Theorem ltexprlemm 7541
Description: Our constructed difference is inhabited. Lemma for ltexpri 7554. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemm (𝐴<P 𝐵 → (∃𝑞Q 𝑞 ∈ (1st𝐶) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝑟,𝐴   𝑥,𝐵,𝑦,𝑞,𝑟   𝑥,𝐶,𝑦,𝑞,𝑟

Proof of Theorem ltexprlemm
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ltrelpr 7446 . . . . . . . . 9 <P ⊆ (P × P)
21brel 4656 . . . . . . . 8 (𝐴<P 𝐵 → (𝐴P𝐵P))
3 ltdfpr 7447 . . . . . . . . 9 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵))))
43biimpd 143 . . . . . . . 8 ((𝐴P𝐵P) → (𝐴<P 𝐵 → ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵))))
52, 4mpcom 36 . . . . . . 7 (𝐴<P 𝐵 → ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)))
6 simprrl 529 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ (𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)))) → 𝑦 ∈ (2nd𝐴))
72simprd 113 . . . . . . . . . . . . 13 (𝐴<P 𝐵𝐵P)
8 prop 7416 . . . . . . . . . . . . . . . . . 18 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
9 prnmaxl 7429 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑦 ∈ (1st𝐵)) → ∃𝑤 ∈ (1st𝐵)𝑦 <Q 𝑤)
108, 9sylan 281 . . . . . . . . . . . . . . . . 17 ((𝐵P𝑦 ∈ (1st𝐵)) → ∃𝑤 ∈ (1st𝐵)𝑦 <Q 𝑤)
11 ltexnqi 7350 . . . . . . . . . . . . . . . . . 18 (𝑦 <Q 𝑤 → ∃𝑞Q (𝑦 +Q 𝑞) = 𝑤)
1211reximi 2563 . . . . . . . . . . . . . . . . 17 (∃𝑤 ∈ (1st𝐵)𝑦 <Q 𝑤 → ∃𝑤 ∈ (1st𝐵)∃𝑞Q (𝑦 +Q 𝑞) = 𝑤)
1310, 12syl 14 . . . . . . . . . . . . . . . 16 ((𝐵P𝑦 ∈ (1st𝐵)) → ∃𝑤 ∈ (1st𝐵)∃𝑞Q (𝑦 +Q 𝑞) = 𝑤)
14 df-rex 2450 . . . . . . . . . . . . . . . 16 (∃𝑤 ∈ (1st𝐵)∃𝑞Q (𝑦 +Q 𝑞) = 𝑤 ↔ ∃𝑤(𝑤 ∈ (1st𝐵) ∧ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑤))
1513, 14sylib 121 . . . . . . . . . . . . . . 15 ((𝐵P𝑦 ∈ (1st𝐵)) → ∃𝑤(𝑤 ∈ (1st𝐵) ∧ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑤))
16 r19.42v 2623 . . . . . . . . . . . . . . . 16 (∃𝑞Q (𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) ↔ (𝑤 ∈ (1st𝐵) ∧ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑤))
1716exbii 1593 . . . . . . . . . . . . . . 15 (∃𝑤𝑞Q (𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) ↔ ∃𝑤(𝑤 ∈ (1st𝐵) ∧ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑤))
1815, 17sylibr 133 . . . . . . . . . . . . . 14 ((𝐵P𝑦 ∈ (1st𝐵)) → ∃𝑤𝑞Q (𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤))
19 eleq1 2229 . . . . . . . . . . . . . . . . 17 ((𝑦 +Q 𝑞) = 𝑤 → ((𝑦 +Q 𝑞) ∈ (1st𝐵) ↔ 𝑤 ∈ (1st𝐵)))
2019biimparc 297 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) → (𝑦 +Q 𝑞) ∈ (1st𝐵))
2120reximi 2563 . . . . . . . . . . . . . . 15 (∃𝑞Q (𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
2221exlimiv 1586 . . . . . . . . . . . . . 14 (∃𝑤𝑞Q (𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
2318, 22syl 14 . . . . . . . . . . . . 13 ((𝐵P𝑦 ∈ (1st𝐵)) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
247, 23sylan 281 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑦 ∈ (1st𝐵)) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
2524adantrl 470 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵))) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
2625adantrl 470 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ (𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)))) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
276, 26jca 304 . . . . . . . . 9 ((𝐴<P 𝐵 ∧ (𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)))) → (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵)))
2827expr 373 . . . . . . . 8 ((𝐴<P 𝐵𝑦Q) → ((𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)) → (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))))
2928reximdva 2568 . . . . . . 7 (𝐴<P 𝐵 → (∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)) → ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))))
305, 29mpd 13 . . . . . 6 (𝐴<P 𝐵 → ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵)))
31 r19.42v 2623 . . . . . . 7 (∃𝑞Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵)))
3231rexbii 2473 . . . . . 6 (∃𝑦Q𝑞Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵)))
3330, 32sylibr 133 . . . . 5 (𝐴<P 𝐵 → ∃𝑦Q𝑞Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
34 rexcom 2630 . . . . 5 (∃𝑦Q𝑞Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q𝑦Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
3533, 34sylib 121 . . . 4 (𝐴<P 𝐵 → ∃𝑞Q𝑦Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
362simpld 111 . . . . . . . . . . . 12 (𝐴<P 𝐵𝐴P)
37 prop 7416 . . . . . . . . . . . . 13 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
38 elprnqu 7423 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
3937, 38sylan 281 . . . . . . . . . . . 12 ((𝐴P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
4036, 39sylan 281 . . . . . . . . . . 11 ((𝐴<P 𝐵𝑦 ∈ (2nd𝐴)) → 𝑦Q)
4140ex 114 . . . . . . . . . 10 (𝐴<P 𝐵 → (𝑦 ∈ (2nd𝐴) → 𝑦Q))
4241pm4.71rd 392 . . . . . . . . 9 (𝐴<P 𝐵 → (𝑦 ∈ (2nd𝐴) ↔ (𝑦Q𝑦 ∈ (2nd𝐴))))
4342anbi1d 461 . . . . . . . 8 (𝐴<P 𝐵 → ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ((𝑦Q𝑦 ∈ (2nd𝐴)) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
44 anass 399 . . . . . . . 8 (((𝑦Q𝑦 ∈ (2nd𝐴)) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ (𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
4543, 44bitrdi 195 . . . . . . 7 (𝐴<P 𝐵 → ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ (𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
4645exbidv 1813 . . . . . 6 (𝐴<P 𝐵 → (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑦(𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
4746rexbidv 2467 . . . . 5 (𝐴<P 𝐵 → (∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q𝑦(𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
48 df-rex 2450 . . . . . 6 (∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑦(𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
4948rexbii 2473 . . . . 5 (∃𝑞Q𝑦Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q𝑦(𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
5047, 49bitr4di 197 . . . 4 (𝐴<P 𝐵 → (∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q𝑦Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
5135, 50mpbird 166 . . 3 (𝐴<P 𝐵 → ∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
52 ltexprlem.1 . . . . . 6 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
5352ltexprlemell 7539 . . . . 5 (𝑞 ∈ (1st𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
5453rexbii 2473 . . . 4 (∃𝑞Q 𝑞 ∈ (1st𝐶) ↔ ∃𝑞Q (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
55 ssid 3162 . . . . 5 QQ
56 rexss 3209 . . . . 5 (QQ → (∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
5755, 56ax-mp 5 . . . 4 (∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
5854, 57bitr4i 186 . . 3 (∃𝑞Q 𝑞 ∈ (1st𝐶) ↔ ∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
5951, 58sylibr 133 . 2 (𝐴<P 𝐵 → ∃𝑞Q 𝑞 ∈ (1st𝐶))
60 nfv 1516 . . 3 𝑟 𝐴<P 𝐵
61 nfre1 2509 . . 3 𝑟𝑟Q 𝑟 ∈ (2nd𝐶)
62 prmu 7419 . . . . 5 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ P → ∃𝑟Q 𝑟 ∈ (2nd𝐵))
63 rexex 2512 . . . . 5 (∃𝑟Q 𝑟 ∈ (2nd𝐵) → ∃𝑟 𝑟 ∈ (2nd𝐵))
6462, 63syl 14 . . . 4 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ P → ∃𝑟 𝑟 ∈ (2nd𝐵))
657, 8, 643syl 17 . . 3 (𝐴<P 𝐵 → ∃𝑟 𝑟 ∈ (2nd𝐵))
66 elprnqu 7423 . . . . . . 7 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑟 ∈ (2nd𝐵)) → 𝑟Q)
678, 66sylan 281 . . . . . 6 ((𝐵P𝑟 ∈ (2nd𝐵)) → 𝑟Q)
687, 67sylan 281 . . . . 5 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → 𝑟Q)
69 prml 7418 . . . . . . . . 9 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑦Q 𝑦 ∈ (1st𝐴))
7037, 69syl 14 . . . . . . . 8 (𝐴P → ∃𝑦Q 𝑦 ∈ (1st𝐴))
71 rexex 2512 . . . . . . . 8 (∃𝑦Q 𝑦 ∈ (1st𝐴) → ∃𝑦 𝑦 ∈ (1st𝐴))
7236, 70, 713syl 17 . . . . . . 7 (𝐴<P 𝐵 → ∃𝑦 𝑦 ∈ (1st𝐴))
7372adantr 274 . . . . . 6 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → ∃𝑦 𝑦 ∈ (1st𝐴))
74683adant3 1007 . . . . . . . . 9 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → 𝑟Q)
75 simp3 989 . . . . . . . . . 10 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦 ∈ (1st𝐴))
76 elprnql 7422 . . . . . . . . . . . . . . 15 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴)) → 𝑦Q)
7737, 76sylan 281 . . . . . . . . . . . . . 14 ((𝐴P𝑦 ∈ (1st𝐴)) → 𝑦Q)
7836, 77sylan 281 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑦 ∈ (1st𝐴)) → 𝑦Q)
79783adant2 1006 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦Q)
80 addcomnqg 7322 . . . . . . . . . . . 12 ((𝑟Q𝑦Q) → (𝑟 +Q 𝑦) = (𝑦 +Q 𝑟))
8174, 79, 80syl2anc 409 . . . . . . . . . . 11 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → (𝑟 +Q 𝑦) = (𝑦 +Q 𝑟))
82 ltaddnq 7348 . . . . . . . . . . . . 13 ((𝑟Q𝑦Q) → 𝑟 <Q (𝑟 +Q 𝑦))
8374, 79, 82syl2anc 409 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → 𝑟 <Q (𝑟 +Q 𝑦))
84 prcunqu 7426 . . . . . . . . . . . . . . 15 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑟 ∈ (2nd𝐵)) → (𝑟 <Q (𝑟 +Q 𝑦) → (𝑟 +Q 𝑦) ∈ (2nd𝐵)))
858, 84sylan 281 . . . . . . . . . . . . . 14 ((𝐵P𝑟 ∈ (2nd𝐵)) → (𝑟 <Q (𝑟 +Q 𝑦) → (𝑟 +Q 𝑦) ∈ (2nd𝐵)))
867, 85sylan 281 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → (𝑟 <Q (𝑟 +Q 𝑦) → (𝑟 +Q 𝑦) ∈ (2nd𝐵)))
87863adant3 1007 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → (𝑟 <Q (𝑟 +Q 𝑦) → (𝑟 +Q 𝑦) ∈ (2nd𝐵)))
8883, 87mpd 13 . . . . . . . . . . 11 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → (𝑟 +Q 𝑦) ∈ (2nd𝐵))
8981, 88eqeltrrd 2244 . . . . . . . . . 10 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → (𝑦 +Q 𝑟) ∈ (2nd𝐵))
90 19.8a 1578 . . . . . . . . . 10 ((𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))
9175, 89, 90syl2anc 409 . . . . . . . . 9 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))
9274, 91jca 304 . . . . . . . 8 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
9352ltexprlemelu 7540 . . . . . . . 8 (𝑟 ∈ (2nd𝐶) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
9492, 93sylibr 133 . . . . . . 7 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → 𝑟 ∈ (2nd𝐶))
95943expa 1193 . . . . . 6 (((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) ∧ 𝑦 ∈ (1st𝐴)) → 𝑟 ∈ (2nd𝐶))
9673, 95exlimddv 1886 . . . . 5 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → 𝑟 ∈ (2nd𝐶))
97 19.8a 1578 . . . . 5 ((𝑟Q𝑟 ∈ (2nd𝐶)) → ∃𝑟(𝑟Q𝑟 ∈ (2nd𝐶)))
9868, 96, 97syl2anc 409 . . . 4 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → ∃𝑟(𝑟Q𝑟 ∈ (2nd𝐶)))
99 df-rex 2450 . . . 4 (∃𝑟Q 𝑟 ∈ (2nd𝐶) ↔ ∃𝑟(𝑟Q𝑟 ∈ (2nd𝐶)))
10098, 99sylibr 133 . . 3 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → ∃𝑟Q 𝑟 ∈ (2nd𝐶))
10160, 61, 65, 100exlimdd 1860 . 2 (𝐴<P 𝐵 → ∃𝑟Q 𝑟 ∈ (2nd𝐶))
10259, 101jca 304 1 (𝐴<P 𝐵 → (∃𝑞Q 𝑞 ∈ (1st𝐶) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968   = wceq 1343  wex 1480  wcel 2136  wrex 2445  {crab 2448  wss 3116  cop 3579   class class class wbr 3982  cfv 5188  (class class class)co 5842  1st c1st 6106  2nd c2nd 6107  Qcnq 7221   +Q cplq 7223   <Q cltq 7226  Pcnp 7232  <P cltp 7236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-ltnqqs 7294  df-inp 7407  df-iltp 7411
This theorem is referenced by:  ltexprlempr  7549
  Copyright terms: Public domain W3C validator