| Step | Hyp | Ref
 | Expression | 
| 1 |   | ltrelpr 7572 | 
. . . . . . . . 9
⊢
<P ⊆ (P ×
P) | 
| 2 | 1 | brel 4715 | 
. . . . . . . 8
⊢ (𝐴<P
𝐵 → (𝐴 ∈ P ∧ 𝐵 ∈
P)) | 
| 3 |   | ltdfpr 7573 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝐴<P 𝐵 ↔ ∃𝑦 ∈ Q (𝑦 ∈ (2nd
‘𝐴) ∧ 𝑦 ∈ (1st
‘𝐵)))) | 
| 4 | 3 | biimpd 144 | 
. . . . . . . 8
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝐴<P 𝐵 → ∃𝑦 ∈ Q (𝑦 ∈ (2nd
‘𝐴) ∧ 𝑦 ∈ (1st
‘𝐵)))) | 
| 5 | 2, 4 | mpcom 36 | 
. . . . . . 7
⊢ (𝐴<P
𝐵 → ∃𝑦 ∈ Q (𝑦 ∈ (2nd
‘𝐴) ∧ 𝑦 ∈ (1st
‘𝐵))) | 
| 6 |   | simprrl 539 | 
. . . . . . . . . 10
⊢ ((𝐴<P
𝐵 ∧ (𝑦 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ 𝑦 ∈ (1st
‘𝐵)))) → 𝑦 ∈ (2nd
‘𝐴)) | 
| 7 | 2 | simprd 114 | 
. . . . . . . . . . . . 13
⊢ (𝐴<P
𝐵 → 𝐵 ∈ P) | 
| 8 |   | prop 7542 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝐵 ∈ P →
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈
P) | 
| 9 |   | prnmaxl 7555 | 
. . . . . . . . . . . . . . . . . 18
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑦 ∈ (1st
‘𝐵)) →
∃𝑤 ∈
(1st ‘𝐵)𝑦 <Q 𝑤) | 
| 10 | 8, 9 | sylan 283 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝐵 ∈ P ∧
𝑦 ∈ (1st
‘𝐵)) →
∃𝑤 ∈
(1st ‘𝐵)𝑦 <Q 𝑤) | 
| 11 |   | ltexnqi 7476 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 <Q
𝑤 → ∃𝑞 ∈ Q (𝑦 +Q
𝑞) = 𝑤) | 
| 12 | 11 | reximi 2594 | 
. . . . . . . . . . . . . . . . 17
⊢
(∃𝑤 ∈
(1st ‘𝐵)𝑦 <Q 𝑤 → ∃𝑤 ∈ (1st
‘𝐵)∃𝑞 ∈ Q (𝑦 +Q
𝑞) = 𝑤) | 
| 13 | 10, 12 | syl 14 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝐵 ∈ P ∧
𝑦 ∈ (1st
‘𝐵)) →
∃𝑤 ∈
(1st ‘𝐵)∃𝑞 ∈ Q (𝑦 +Q 𝑞) = 𝑤) | 
| 14 |   | df-rex 2481 | 
. . . . . . . . . . . . . . . 16
⊢
(∃𝑤 ∈
(1st ‘𝐵)∃𝑞 ∈ Q (𝑦 +Q 𝑞) = 𝑤 ↔ ∃𝑤(𝑤 ∈ (1st ‘𝐵) ∧ ∃𝑞 ∈ Q (𝑦 +Q
𝑞) = 𝑤)) | 
| 15 | 13, 14 | sylib 122 | 
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ∈ P ∧
𝑦 ∈ (1st
‘𝐵)) →
∃𝑤(𝑤 ∈ (1st ‘𝐵) ∧ ∃𝑞 ∈ Q (𝑦 +Q
𝑞) = 𝑤)) | 
| 16 |   | r19.42v 2654 | 
. . . . . . . . . . . . . . . 16
⊢
(∃𝑞 ∈
Q (𝑤 ∈
(1st ‘𝐵)
∧ (𝑦
+Q 𝑞) = 𝑤) ↔ (𝑤 ∈ (1st ‘𝐵) ∧ ∃𝑞 ∈ Q (𝑦 +Q
𝑞) = 𝑤)) | 
| 17 | 16 | exbii 1619 | 
. . . . . . . . . . . . . . 15
⊢
(∃𝑤∃𝑞 ∈ Q (𝑤 ∈ (1st ‘𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) ↔ ∃𝑤(𝑤 ∈ (1st ‘𝐵) ∧ ∃𝑞 ∈ Q (𝑦 +Q
𝑞) = 𝑤)) | 
| 18 | 15, 17 | sylibr 134 | 
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ P ∧
𝑦 ∈ (1st
‘𝐵)) →
∃𝑤∃𝑞 ∈ Q (𝑤 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞) = 𝑤)) | 
| 19 |   | eleq1 2259 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑦 +Q
𝑞) = 𝑤 → ((𝑦 +Q 𝑞) ∈ (1st
‘𝐵) ↔ 𝑤 ∈ (1st
‘𝐵))) | 
| 20 | 19 | biimparc 299 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑤 ∈ (1st
‘𝐵) ∧ (𝑦 +Q
𝑞) = 𝑤) → (𝑦 +Q 𝑞) ∈ (1st
‘𝐵)) | 
| 21 | 20 | reximi 2594 | 
. . . . . . . . . . . . . . 15
⊢
(∃𝑞 ∈
Q (𝑤 ∈
(1st ‘𝐵)
∧ (𝑦
+Q 𝑞) = 𝑤) → ∃𝑞 ∈ Q (𝑦 +Q 𝑞) ∈ (1st
‘𝐵)) | 
| 22 | 21 | exlimiv 1612 | 
. . . . . . . . . . . . . 14
⊢
(∃𝑤∃𝑞 ∈ Q (𝑤 ∈ (1st ‘𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) → ∃𝑞 ∈ Q (𝑦 +Q 𝑞) ∈ (1st
‘𝐵)) | 
| 23 | 18, 22 | syl 14 | 
. . . . . . . . . . . . 13
⊢ ((𝐵 ∈ P ∧
𝑦 ∈ (1st
‘𝐵)) →
∃𝑞 ∈
Q (𝑦
+Q 𝑞) ∈ (1st ‘𝐵)) | 
| 24 | 7, 23 | sylan 283 | 
. . . . . . . . . . . 12
⊢ ((𝐴<P
𝐵 ∧ 𝑦 ∈ (1st ‘𝐵)) → ∃𝑞 ∈ Q (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)) | 
| 25 | 24 | adantrl 478 | 
. . . . . . . . . . 11
⊢ ((𝐴<P
𝐵 ∧ (𝑦 ∈ (2nd ‘𝐴) ∧ 𝑦 ∈ (1st ‘𝐵))) → ∃𝑞 ∈ Q (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)) | 
| 26 | 25 | adantrl 478 | 
. . . . . . . . . 10
⊢ ((𝐴<P
𝐵 ∧ (𝑦 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ 𝑦 ∈ (1st
‘𝐵)))) →
∃𝑞 ∈
Q (𝑦
+Q 𝑞) ∈ (1st ‘𝐵)) | 
| 27 | 6, 26 | jca 306 | 
. . . . . . . . 9
⊢ ((𝐴<P
𝐵 ∧ (𝑦 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ 𝑦 ∈ (1st
‘𝐵)))) → (𝑦 ∈ (2nd
‘𝐴) ∧
∃𝑞 ∈
Q (𝑦
+Q 𝑞) ∈ (1st ‘𝐵))) | 
| 28 | 27 | expr 375 | 
. . . . . . . 8
⊢ ((𝐴<P
𝐵 ∧ 𝑦 ∈ Q) → ((𝑦 ∈ (2nd
‘𝐴) ∧ 𝑦 ∈ (1st
‘𝐵)) → (𝑦 ∈ (2nd
‘𝐴) ∧
∃𝑞 ∈
Q (𝑦
+Q 𝑞) ∈ (1st ‘𝐵)))) | 
| 29 | 28 | reximdva 2599 | 
. . . . . . 7
⊢ (𝐴<P
𝐵 → (∃𝑦 ∈ Q (𝑦 ∈ (2nd
‘𝐴) ∧ 𝑦 ∈ (1st
‘𝐵)) →
∃𝑦 ∈
Q (𝑦 ∈
(2nd ‘𝐴)
∧ ∃𝑞 ∈
Q (𝑦
+Q 𝑞) ∈ (1st ‘𝐵)))) | 
| 30 | 5, 29 | mpd 13 | 
. . . . . 6
⊢ (𝐴<P
𝐵 → ∃𝑦 ∈ Q (𝑦 ∈ (2nd
‘𝐴) ∧
∃𝑞 ∈
Q (𝑦
+Q 𝑞) ∈ (1st ‘𝐵))) | 
| 31 |   | r19.42v 2654 | 
. . . . . . 7
⊢
(∃𝑞 ∈
Q (𝑦 ∈
(2nd ‘𝐴)
∧ (𝑦
+Q 𝑞) ∈ (1st ‘𝐵)) ↔ (𝑦 ∈ (2nd ‘𝐴) ∧ ∃𝑞 ∈ Q (𝑦 +Q
𝑞) ∈ (1st
‘𝐵))) | 
| 32 | 31 | rexbii 2504 | 
. . . . . 6
⊢
(∃𝑦 ∈
Q ∃𝑞
∈ Q (𝑦
∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵)) ↔
∃𝑦 ∈
Q (𝑦 ∈
(2nd ‘𝐴)
∧ ∃𝑞 ∈
Q (𝑦
+Q 𝑞) ∈ (1st ‘𝐵))) | 
| 33 | 30, 32 | sylibr 134 | 
. . . . 5
⊢ (𝐴<P
𝐵 → ∃𝑦 ∈ Q
∃𝑞 ∈
Q (𝑦 ∈
(2nd ‘𝐴)
∧ (𝑦
+Q 𝑞) ∈ (1st ‘𝐵))) | 
| 34 |   | rexcom 2661 | 
. . . . 5
⊢
(∃𝑦 ∈
Q ∃𝑞
∈ Q (𝑦
∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵)) ↔
∃𝑞 ∈
Q ∃𝑦
∈ Q (𝑦
∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵))) | 
| 35 | 33, 34 | sylib 122 | 
. . . 4
⊢ (𝐴<P
𝐵 → ∃𝑞 ∈ Q
∃𝑦 ∈
Q (𝑦 ∈
(2nd ‘𝐴)
∧ (𝑦
+Q 𝑞) ∈ (1st ‘𝐵))) | 
| 36 | 2 | simpld 112 | 
. . . . . . . . . . . 12
⊢ (𝐴<P
𝐵 → 𝐴 ∈ P) | 
| 37 |   | prop 7542 | 
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) | 
| 38 |   | elprnqu 7549 | 
. . . . . . . . . . . . 13
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑦 ∈ (2nd
‘𝐴)) → 𝑦 ∈
Q) | 
| 39 | 37, 38 | sylan 283 | 
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ P ∧
𝑦 ∈ (2nd
‘𝐴)) → 𝑦 ∈
Q) | 
| 40 | 36, 39 | sylan 283 | 
. . . . . . . . . . 11
⊢ ((𝐴<P
𝐵 ∧ 𝑦 ∈ (2nd ‘𝐴)) → 𝑦 ∈ Q) | 
| 41 | 40 | ex 115 | 
. . . . . . . . . 10
⊢ (𝐴<P
𝐵 → (𝑦 ∈ (2nd
‘𝐴) → 𝑦 ∈
Q)) | 
| 42 | 41 | pm4.71rd 394 | 
. . . . . . . . 9
⊢ (𝐴<P
𝐵 → (𝑦 ∈ (2nd
‘𝐴) ↔ (𝑦 ∈ Q ∧
𝑦 ∈ (2nd
‘𝐴)))) | 
| 43 | 42 | anbi1d 465 | 
. . . . . . . 8
⊢ (𝐴<P
𝐵 → ((𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)) ↔ ((𝑦 ∈ Q ∧
𝑦 ∈ (2nd
‘𝐴)) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) | 
| 44 |   | anass 401 | 
. . . . . . . 8
⊢ (((𝑦 ∈ Q ∧
𝑦 ∈ (2nd
‘𝐴)) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)) ↔ (𝑦 ∈ Q ∧
(𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) | 
| 45 | 43, 44 | bitrdi 196 | 
. . . . . . 7
⊢ (𝐴<P
𝐵 → ((𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)) ↔ (𝑦 ∈ Q ∧
(𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵))))) | 
| 46 | 45 | exbidv 1839 | 
. . . . . 6
⊢ (𝐴<P
𝐵 → (∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵)) ↔
∃𝑦(𝑦 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵))))) | 
| 47 | 46 | rexbidv 2498 | 
. . . . 5
⊢ (𝐴<P
𝐵 → (∃𝑞 ∈ Q
∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵)) ↔
∃𝑞 ∈
Q ∃𝑦(𝑦 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵))))) | 
| 48 |   | df-rex 2481 | 
. . . . . 6
⊢
(∃𝑦 ∈
Q (𝑦 ∈
(2nd ‘𝐴)
∧ (𝑦
+Q 𝑞) ∈ (1st ‘𝐵)) ↔ ∃𝑦(𝑦 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) | 
| 49 | 48 | rexbii 2504 | 
. . . . 5
⊢
(∃𝑞 ∈
Q ∃𝑦
∈ Q (𝑦
∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵)) ↔
∃𝑞 ∈
Q ∃𝑦(𝑦 ∈ Q ∧ (𝑦 ∈ (2nd
‘𝐴) ∧ (𝑦 +Q
𝑞) ∈ (1st
‘𝐵)))) | 
| 50 | 47, 49 | bitr4di 198 | 
. . . 4
⊢ (𝐴<P
𝐵 → (∃𝑞 ∈ Q
∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵)) ↔
∃𝑞 ∈
Q ∃𝑦
∈ Q (𝑦
∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵)))) | 
| 51 | 35, 50 | mpbird 167 | 
. . 3
⊢ (𝐴<P
𝐵 → ∃𝑞 ∈ Q
∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵))) | 
| 52 |   | ltexprlem.1 | 
. . . . . 6
⊢ 𝐶 = 〈{𝑥 ∈ Q ∣ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st
‘𝐵))}, {𝑥 ∈ Q ∣
∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd
‘𝐵))}〉 | 
| 53 | 52 | ltexprlemell 7665 | 
. . . . 5
⊢ (𝑞 ∈ (1st
‘𝐶) ↔ (𝑞 ∈ Q ∧
∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵)))) | 
| 54 | 53 | rexbii 2504 | 
. . . 4
⊢
(∃𝑞 ∈
Q 𝑞 ∈
(1st ‘𝐶)
↔ ∃𝑞 ∈
Q (𝑞 ∈
Q ∧ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵)))) | 
| 55 |   | ssid 3203 | 
. . . . 5
⊢
Q ⊆ Q | 
| 56 |   | rexss 3250 | 
. . . . 5
⊢
(Q ⊆ Q → (∃𝑞 ∈ Q
∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵)) ↔
∃𝑞 ∈
Q (𝑞 ∈
Q ∧ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵))))) | 
| 57 | 55, 56 | ax-mp 5 | 
. . . 4
⊢
(∃𝑞 ∈
Q ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵)) ↔
∃𝑞 ∈
Q (𝑞 ∈
Q ∧ ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵)))) | 
| 58 | 54, 57 | bitr4i 187 | 
. . 3
⊢
(∃𝑞 ∈
Q 𝑞 ∈
(1st ‘𝐶)
↔ ∃𝑞 ∈
Q ∃𝑦(𝑦 ∈ (2nd ‘𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st
‘𝐵))) | 
| 59 | 51, 58 | sylibr 134 | 
. 2
⊢ (𝐴<P
𝐵 → ∃𝑞 ∈ Q 𝑞 ∈ (1st
‘𝐶)) | 
| 60 |   | nfv 1542 | 
. . 3
⊢
Ⅎ𝑟 𝐴<P
𝐵 | 
| 61 |   | nfre1 2540 | 
. . 3
⊢
Ⅎ𝑟∃𝑟 ∈ Q 𝑟 ∈ (2nd
‘𝐶) | 
| 62 |   | prmu 7545 | 
. . . . 5
⊢
(〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P →
∃𝑟 ∈
Q 𝑟 ∈
(2nd ‘𝐵)) | 
| 63 |   | rexex 2543 | 
. . . . 5
⊢
(∃𝑟 ∈
Q 𝑟 ∈
(2nd ‘𝐵)
→ ∃𝑟 𝑟 ∈ (2nd
‘𝐵)) | 
| 64 | 62, 63 | syl 14 | 
. . . 4
⊢
(〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P →
∃𝑟 𝑟 ∈ (2nd ‘𝐵)) | 
| 65 | 7, 8, 64 | 3syl 17 | 
. . 3
⊢ (𝐴<P
𝐵 → ∃𝑟 𝑟 ∈ (2nd ‘𝐵)) | 
| 66 |   | elprnqu 7549 | 
. . . . . . 7
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑟 ∈ (2nd
‘𝐵)) → 𝑟 ∈
Q) | 
| 67 | 8, 66 | sylan 283 | 
. . . . . 6
⊢ ((𝐵 ∈ P ∧
𝑟 ∈ (2nd
‘𝐵)) → 𝑟 ∈
Q) | 
| 68 | 7, 67 | sylan 283 | 
. . . . 5
⊢ ((𝐴<P
𝐵 ∧ 𝑟 ∈ (2nd ‘𝐵)) → 𝑟 ∈ Q) | 
| 69 |   | prml 7544 | 
. . . . . . . . 9
⊢
(〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P →
∃𝑦 ∈
Q 𝑦 ∈
(1st ‘𝐴)) | 
| 70 | 37, 69 | syl 14 | 
. . . . . . . 8
⊢ (𝐴 ∈ P →
∃𝑦 ∈
Q 𝑦 ∈
(1st ‘𝐴)) | 
| 71 |   | rexex 2543 | 
. . . . . . . 8
⊢
(∃𝑦 ∈
Q 𝑦 ∈
(1st ‘𝐴)
→ ∃𝑦 𝑦 ∈ (1st
‘𝐴)) | 
| 72 | 36, 70, 71 | 3syl 17 | 
. . . . . . 7
⊢ (𝐴<P
𝐵 → ∃𝑦 𝑦 ∈ (1st ‘𝐴)) | 
| 73 | 72 | adantr 276 | 
. . . . . 6
⊢ ((𝐴<P
𝐵 ∧ 𝑟 ∈ (2nd ‘𝐵)) → ∃𝑦 𝑦 ∈ (1st ‘𝐴)) | 
| 74 | 68 | 3adant3 1019 | 
. . . . . . . . 9
⊢ ((𝐴<P
𝐵 ∧ 𝑟 ∈ (2nd ‘𝐵) ∧ 𝑦 ∈ (1st ‘𝐴)) → 𝑟 ∈ Q) | 
| 75 |   | simp3 1001 | 
. . . . . . . . . 10
⊢ ((𝐴<P
𝐵 ∧ 𝑟 ∈ (2nd ‘𝐵) ∧ 𝑦 ∈ (1st ‘𝐴)) → 𝑦 ∈ (1st ‘𝐴)) | 
| 76 |   | elprnql 7548 | 
. . . . . . . . . . . . . . 15
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑦 ∈ (1st
‘𝐴)) → 𝑦 ∈
Q) | 
| 77 | 37, 76 | sylan 283 | 
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ P ∧
𝑦 ∈ (1st
‘𝐴)) → 𝑦 ∈
Q) | 
| 78 | 36, 77 | sylan 283 | 
. . . . . . . . . . . . 13
⊢ ((𝐴<P
𝐵 ∧ 𝑦 ∈ (1st ‘𝐴)) → 𝑦 ∈ Q) | 
| 79 | 78 | 3adant2 1018 | 
. . . . . . . . . . . 12
⊢ ((𝐴<P
𝐵 ∧ 𝑟 ∈ (2nd ‘𝐵) ∧ 𝑦 ∈ (1st ‘𝐴)) → 𝑦 ∈ Q) | 
| 80 |   | addcomnqg 7448 | 
. . . . . . . . . . . 12
⊢ ((𝑟 ∈ Q ∧
𝑦 ∈ Q)
→ (𝑟
+Q 𝑦) = (𝑦 +Q 𝑟)) | 
| 81 | 74, 79, 80 | syl2anc 411 | 
. . . . . . . . . . 11
⊢ ((𝐴<P
𝐵 ∧ 𝑟 ∈ (2nd ‘𝐵) ∧ 𝑦 ∈ (1st ‘𝐴)) → (𝑟 +Q 𝑦) = (𝑦 +Q 𝑟)) | 
| 82 |   | ltaddnq 7474 | 
. . . . . . . . . . . . 13
⊢ ((𝑟 ∈ Q ∧
𝑦 ∈ Q)
→ 𝑟
<Q (𝑟 +Q 𝑦)) | 
| 83 | 74, 79, 82 | syl2anc 411 | 
. . . . . . . . . . . 12
⊢ ((𝐴<P
𝐵 ∧ 𝑟 ∈ (2nd ‘𝐵) ∧ 𝑦 ∈ (1st ‘𝐴)) → 𝑟 <Q (𝑟 +Q
𝑦)) | 
| 84 |   | prcunqu 7552 | 
. . . . . . . . . . . . . . 15
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑟 ∈ (2nd
‘𝐵)) → (𝑟 <Q
(𝑟
+Q 𝑦) → (𝑟 +Q 𝑦) ∈ (2nd
‘𝐵))) | 
| 85 | 8, 84 | sylan 283 | 
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ P ∧
𝑟 ∈ (2nd
‘𝐵)) → (𝑟 <Q
(𝑟
+Q 𝑦) → (𝑟 +Q 𝑦) ∈ (2nd
‘𝐵))) | 
| 86 | 7, 85 | sylan 283 | 
. . . . . . . . . . . . 13
⊢ ((𝐴<P
𝐵 ∧ 𝑟 ∈ (2nd ‘𝐵)) → (𝑟 <Q (𝑟 +Q
𝑦) → (𝑟 +Q
𝑦) ∈ (2nd
‘𝐵))) | 
| 87 | 86 | 3adant3 1019 | 
. . . . . . . . . . . 12
⊢ ((𝐴<P
𝐵 ∧ 𝑟 ∈ (2nd ‘𝐵) ∧ 𝑦 ∈ (1st ‘𝐴)) → (𝑟 <Q (𝑟 +Q
𝑦) → (𝑟 +Q
𝑦) ∈ (2nd
‘𝐵))) | 
| 88 | 83, 87 | mpd 13 | 
. . . . . . . . . . 11
⊢ ((𝐴<P
𝐵 ∧ 𝑟 ∈ (2nd ‘𝐵) ∧ 𝑦 ∈ (1st ‘𝐴)) → (𝑟 +Q 𝑦) ∈ (2nd
‘𝐵)) | 
| 89 | 81, 88 | eqeltrrd 2274 | 
. . . . . . . . . 10
⊢ ((𝐴<P
𝐵 ∧ 𝑟 ∈ (2nd ‘𝐵) ∧ 𝑦 ∈ (1st ‘𝐴)) → (𝑦 +Q 𝑟) ∈ (2nd
‘𝐵)) | 
| 90 |   | 19.8a 1604 | 
. . . . . . . . . 10
⊢ ((𝑦 ∈ (1st
‘𝐴) ∧ (𝑦 +Q
𝑟) ∈ (2nd
‘𝐵)) →
∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd
‘𝐵))) | 
| 91 | 75, 89, 90 | syl2anc 411 | 
. . . . . . . . 9
⊢ ((𝐴<P
𝐵 ∧ 𝑟 ∈ (2nd ‘𝐵) ∧ 𝑦 ∈ (1st ‘𝐴)) → ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd
‘𝐵))) | 
| 92 | 74, 91 | jca 306 | 
. . . . . . . 8
⊢ ((𝐴<P
𝐵 ∧ 𝑟 ∈ (2nd ‘𝐵) ∧ 𝑦 ∈ (1st ‘𝐴)) → (𝑟 ∈ Q ∧ ∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd
‘𝐵)))) | 
| 93 | 52 | ltexprlemelu 7666 | 
. . . . . . . 8
⊢ (𝑟 ∈ (2nd
‘𝐶) ↔ (𝑟 ∈ Q ∧
∃𝑦(𝑦 ∈ (1st ‘𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd
‘𝐵)))) | 
| 94 | 92, 93 | sylibr 134 | 
. . . . . . 7
⊢ ((𝐴<P
𝐵 ∧ 𝑟 ∈ (2nd ‘𝐵) ∧ 𝑦 ∈ (1st ‘𝐴)) → 𝑟 ∈ (2nd ‘𝐶)) | 
| 95 | 94 | 3expa 1205 | 
. . . . . 6
⊢ (((𝐴<P
𝐵 ∧ 𝑟 ∈ (2nd ‘𝐵)) ∧ 𝑦 ∈ (1st ‘𝐴)) → 𝑟 ∈ (2nd ‘𝐶)) | 
| 96 | 73, 95 | exlimddv 1913 | 
. . . . 5
⊢ ((𝐴<P
𝐵 ∧ 𝑟 ∈ (2nd ‘𝐵)) → 𝑟 ∈ (2nd ‘𝐶)) | 
| 97 |   | 19.8a 1604 | 
. . . . 5
⊢ ((𝑟 ∈ Q ∧
𝑟 ∈ (2nd
‘𝐶)) →
∃𝑟(𝑟 ∈ Q ∧ 𝑟 ∈ (2nd
‘𝐶))) | 
| 98 | 68, 96, 97 | syl2anc 411 | 
. . . 4
⊢ ((𝐴<P
𝐵 ∧ 𝑟 ∈ (2nd ‘𝐵)) → ∃𝑟(𝑟 ∈ Q ∧ 𝑟 ∈ (2nd
‘𝐶))) | 
| 99 |   | df-rex 2481 | 
. . . 4
⊢
(∃𝑟 ∈
Q 𝑟 ∈
(2nd ‘𝐶)
↔ ∃𝑟(𝑟 ∈ Q ∧
𝑟 ∈ (2nd
‘𝐶))) | 
| 100 | 98, 99 | sylibr 134 | 
. . 3
⊢ ((𝐴<P
𝐵 ∧ 𝑟 ∈ (2nd ‘𝐵)) → ∃𝑟 ∈ Q 𝑟 ∈ (2nd
‘𝐶)) | 
| 101 | 60, 61, 65, 100 | exlimdd 1886 | 
. 2
⊢ (𝐴<P
𝐵 → ∃𝑟 ∈ Q 𝑟 ∈ (2nd
‘𝐶)) | 
| 102 | 59, 101 | jca 306 | 
1
⊢ (𝐴<P
𝐵 → (∃𝑞 ∈ Q 𝑞 ∈ (1st
‘𝐶) ∧
∃𝑟 ∈
Q 𝑟 ∈
(2nd ‘𝐶))) |