ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemm GIF version

Theorem ltexprlemm 7062
Description: Our constructed difference is inhabited. Lemma for ltexpri 7075. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemm (𝐴<P 𝐵 → (∃𝑞Q 𝑞 ∈ (1st𝐶) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝑟,𝐴   𝑥,𝐵,𝑦,𝑞,𝑟   𝑥,𝐶,𝑦,𝑞,𝑟

Proof of Theorem ltexprlemm
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ltrelpr 6967 . . . . . . . . 9 <P ⊆ (P × P)
21brel 4448 . . . . . . . 8 (𝐴<P 𝐵 → (𝐴P𝐵P))
3 ltdfpr 6968 . . . . . . . . 9 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵))))
43biimpd 142 . . . . . . . 8 ((𝐴P𝐵P) → (𝐴<P 𝐵 → ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵))))
52, 4mpcom 36 . . . . . . 7 (𝐴<P 𝐵 → ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)))
6 simprrl 506 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ (𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)))) → 𝑦 ∈ (2nd𝐴))
72simprd 112 . . . . . . . . . . . . 13 (𝐴<P 𝐵𝐵P)
8 prop 6937 . . . . . . . . . . . . . . . . . 18 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
9 prnmaxl 6950 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑦 ∈ (1st𝐵)) → ∃𝑤 ∈ (1st𝐵)𝑦 <Q 𝑤)
108, 9sylan 277 . . . . . . . . . . . . . . . . 17 ((𝐵P𝑦 ∈ (1st𝐵)) → ∃𝑤 ∈ (1st𝐵)𝑦 <Q 𝑤)
11 ltexnqi 6871 . . . . . . . . . . . . . . . . . 18 (𝑦 <Q 𝑤 → ∃𝑞Q (𝑦 +Q 𝑞) = 𝑤)
1211reximi 2464 . . . . . . . . . . . . . . . . 17 (∃𝑤 ∈ (1st𝐵)𝑦 <Q 𝑤 → ∃𝑤 ∈ (1st𝐵)∃𝑞Q (𝑦 +Q 𝑞) = 𝑤)
1310, 12syl 14 . . . . . . . . . . . . . . . 16 ((𝐵P𝑦 ∈ (1st𝐵)) → ∃𝑤 ∈ (1st𝐵)∃𝑞Q (𝑦 +Q 𝑞) = 𝑤)
14 df-rex 2359 . . . . . . . . . . . . . . . 16 (∃𝑤 ∈ (1st𝐵)∃𝑞Q (𝑦 +Q 𝑞) = 𝑤 ↔ ∃𝑤(𝑤 ∈ (1st𝐵) ∧ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑤))
1513, 14sylib 120 . . . . . . . . . . . . . . 15 ((𝐵P𝑦 ∈ (1st𝐵)) → ∃𝑤(𝑤 ∈ (1st𝐵) ∧ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑤))
16 r19.42v 2517 . . . . . . . . . . . . . . . 16 (∃𝑞Q (𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) ↔ (𝑤 ∈ (1st𝐵) ∧ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑤))
1716exbii 1537 . . . . . . . . . . . . . . 15 (∃𝑤𝑞Q (𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) ↔ ∃𝑤(𝑤 ∈ (1st𝐵) ∧ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑤))
1815, 17sylibr 132 . . . . . . . . . . . . . 14 ((𝐵P𝑦 ∈ (1st𝐵)) → ∃𝑤𝑞Q (𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤))
19 eleq1 2145 . . . . . . . . . . . . . . . . 17 ((𝑦 +Q 𝑞) = 𝑤 → ((𝑦 +Q 𝑞) ∈ (1st𝐵) ↔ 𝑤 ∈ (1st𝐵)))
2019biimparc 293 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) → (𝑦 +Q 𝑞) ∈ (1st𝐵))
2120reximi 2464 . . . . . . . . . . . . . . 15 (∃𝑞Q (𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
2221exlimiv 1530 . . . . . . . . . . . . . 14 (∃𝑤𝑞Q (𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
2318, 22syl 14 . . . . . . . . . . . . 13 ((𝐵P𝑦 ∈ (1st𝐵)) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
247, 23sylan 277 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑦 ∈ (1st𝐵)) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
2524adantrl 462 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵))) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
2625adantrl 462 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ (𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)))) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
276, 26jca 300 . . . . . . . . 9 ((𝐴<P 𝐵 ∧ (𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)))) → (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵)))
2827expr 367 . . . . . . . 8 ((𝐴<P 𝐵𝑦Q) → ((𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)) → (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))))
2928reximdva 2469 . . . . . . 7 (𝐴<P 𝐵 → (∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)) → ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))))
305, 29mpd 13 . . . . . 6 (𝐴<P 𝐵 → ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵)))
31 r19.42v 2517 . . . . . . 7 (∃𝑞Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵)))
3231rexbii 2379 . . . . . 6 (∃𝑦Q𝑞Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵)))
3330, 32sylibr 132 . . . . 5 (𝐴<P 𝐵 → ∃𝑦Q𝑞Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
34 rexcom 2524 . . . . 5 (∃𝑦Q𝑞Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q𝑦Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
3533, 34sylib 120 . . . 4 (𝐴<P 𝐵 → ∃𝑞Q𝑦Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
362simpld 110 . . . . . . . . . . . 12 (𝐴<P 𝐵𝐴P)
37 prop 6937 . . . . . . . . . . . . 13 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
38 elprnqu 6944 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
3937, 38sylan 277 . . . . . . . . . . . 12 ((𝐴P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
4036, 39sylan 277 . . . . . . . . . . 11 ((𝐴<P 𝐵𝑦 ∈ (2nd𝐴)) → 𝑦Q)
4140ex 113 . . . . . . . . . 10 (𝐴<P 𝐵 → (𝑦 ∈ (2nd𝐴) → 𝑦Q))
4241pm4.71rd 386 . . . . . . . . 9 (𝐴<P 𝐵 → (𝑦 ∈ (2nd𝐴) ↔ (𝑦Q𝑦 ∈ (2nd𝐴))))
4342anbi1d 453 . . . . . . . 8 (𝐴<P 𝐵 → ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ((𝑦Q𝑦 ∈ (2nd𝐴)) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
44 anass 393 . . . . . . . 8 (((𝑦Q𝑦 ∈ (2nd𝐴)) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ (𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
4543, 44syl6bb 194 . . . . . . 7 (𝐴<P 𝐵 → ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ (𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
4645exbidv 1748 . . . . . 6 (𝐴<P 𝐵 → (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑦(𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
4746rexbidv 2375 . . . . 5 (𝐴<P 𝐵 → (∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q𝑦(𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
48 df-rex 2359 . . . . . 6 (∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑦(𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
4948rexbii 2379 . . . . 5 (∃𝑞Q𝑦Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q𝑦(𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
5047, 49syl6bbr 196 . . . 4 (𝐴<P 𝐵 → (∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q𝑦Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
5135, 50mpbird 165 . . 3 (𝐴<P 𝐵 → ∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
52 ltexprlem.1 . . . . . 6 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
5352ltexprlemell 7060 . . . . 5 (𝑞 ∈ (1st𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
5453rexbii 2379 . . . 4 (∃𝑞Q 𝑞 ∈ (1st𝐶) ↔ ∃𝑞Q (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
55 ssid 3029 . . . . 5 QQ
56 rexss 3072 . . . . 5 (QQ → (∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
5755, 56ax-mp 7 . . . 4 (∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
5854, 57bitr4i 185 . . 3 (∃𝑞Q 𝑞 ∈ (1st𝐶) ↔ ∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
5951, 58sylibr 132 . 2 (𝐴<P 𝐵 → ∃𝑞Q 𝑞 ∈ (1st𝐶))
60 nfv 1462 . . 3 𝑟 𝐴<P 𝐵
61 nfre1 2413 . . 3 𝑟𝑟Q 𝑟 ∈ (2nd𝐶)
62 prmu 6940 . . . . 5 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ P → ∃𝑟Q 𝑟 ∈ (2nd𝐵))
63 rexex 2416 . . . . 5 (∃𝑟Q 𝑟 ∈ (2nd𝐵) → ∃𝑟 𝑟 ∈ (2nd𝐵))
6462, 63syl 14 . . . 4 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ P → ∃𝑟 𝑟 ∈ (2nd𝐵))
657, 8, 643syl 17 . . 3 (𝐴<P 𝐵 → ∃𝑟 𝑟 ∈ (2nd𝐵))
66 elprnqu 6944 . . . . . . 7 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑟 ∈ (2nd𝐵)) → 𝑟Q)
678, 66sylan 277 . . . . . 6 ((𝐵P𝑟 ∈ (2nd𝐵)) → 𝑟Q)
687, 67sylan 277 . . . . 5 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → 𝑟Q)
69 prml 6939 . . . . . . . . 9 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑦Q 𝑦 ∈ (1st𝐴))
7037, 69syl 14 . . . . . . . 8 (𝐴P → ∃𝑦Q 𝑦 ∈ (1st𝐴))
71 rexex 2416 . . . . . . . 8 (∃𝑦Q 𝑦 ∈ (1st𝐴) → ∃𝑦 𝑦 ∈ (1st𝐴))
7236, 70, 713syl 17 . . . . . . 7 (𝐴<P 𝐵 → ∃𝑦 𝑦 ∈ (1st𝐴))
7372adantr 270 . . . . . 6 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → ∃𝑦 𝑦 ∈ (1st𝐴))
74683adant3 959 . . . . . . . . 9 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → 𝑟Q)
75 simp3 941 . . . . . . . . . 10 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦 ∈ (1st𝐴))
76 elprnql 6943 . . . . . . . . . . . . . . 15 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴)) → 𝑦Q)
7737, 76sylan 277 . . . . . . . . . . . . . 14 ((𝐴P𝑦 ∈ (1st𝐴)) → 𝑦Q)
7836, 77sylan 277 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑦 ∈ (1st𝐴)) → 𝑦Q)
79783adant2 958 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦Q)
80 addcomnqg 6843 . . . . . . . . . . . 12 ((𝑟Q𝑦Q) → (𝑟 +Q 𝑦) = (𝑦 +Q 𝑟))
8174, 79, 80syl2anc 403 . . . . . . . . . . 11 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → (𝑟 +Q 𝑦) = (𝑦 +Q 𝑟))
82 ltaddnq 6869 . . . . . . . . . . . . 13 ((𝑟Q𝑦Q) → 𝑟 <Q (𝑟 +Q 𝑦))
8374, 79, 82syl2anc 403 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → 𝑟 <Q (𝑟 +Q 𝑦))
84 prcunqu 6947 . . . . . . . . . . . . . . 15 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑟 ∈ (2nd𝐵)) → (𝑟 <Q (𝑟 +Q 𝑦) → (𝑟 +Q 𝑦) ∈ (2nd𝐵)))
858, 84sylan 277 . . . . . . . . . . . . . 14 ((𝐵P𝑟 ∈ (2nd𝐵)) → (𝑟 <Q (𝑟 +Q 𝑦) → (𝑟 +Q 𝑦) ∈ (2nd𝐵)))
867, 85sylan 277 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → (𝑟 <Q (𝑟 +Q 𝑦) → (𝑟 +Q 𝑦) ∈ (2nd𝐵)))
87863adant3 959 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → (𝑟 <Q (𝑟 +Q 𝑦) → (𝑟 +Q 𝑦) ∈ (2nd𝐵)))
8883, 87mpd 13 . . . . . . . . . . 11 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → (𝑟 +Q 𝑦) ∈ (2nd𝐵))
8981, 88eqeltrrd 2160 . . . . . . . . . 10 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → (𝑦 +Q 𝑟) ∈ (2nd𝐵))
90 19.8a 1523 . . . . . . . . . 10 ((𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))
9175, 89, 90syl2anc 403 . . . . . . . . 9 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))
9274, 91jca 300 . . . . . . . 8 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
9352ltexprlemelu 7061 . . . . . . . 8 (𝑟 ∈ (2nd𝐶) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
9492, 93sylibr 132 . . . . . . 7 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → 𝑟 ∈ (2nd𝐶))
95943expa 1139 . . . . . 6 (((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) ∧ 𝑦 ∈ (1st𝐴)) → 𝑟 ∈ (2nd𝐶))
9673, 95exlimddv 1821 . . . . 5 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → 𝑟 ∈ (2nd𝐶))
97 19.8a 1523 . . . . 5 ((𝑟Q𝑟 ∈ (2nd𝐶)) → ∃𝑟(𝑟Q𝑟 ∈ (2nd𝐶)))
9868, 96, 97syl2anc 403 . . . 4 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → ∃𝑟(𝑟Q𝑟 ∈ (2nd𝐶)))
99 df-rex 2359 . . . 4 (∃𝑟Q 𝑟 ∈ (2nd𝐶) ↔ ∃𝑟(𝑟Q𝑟 ∈ (2nd𝐶)))
10098, 99sylibr 132 . . 3 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → ∃𝑟Q 𝑟 ∈ (2nd𝐶))
10160, 61, 65, 100exlimdd 1795 . 2 (𝐴<P 𝐵 → ∃𝑟Q 𝑟 ∈ (2nd𝐶))
10259, 101jca 300 1 (𝐴<P 𝐵 → (∃𝑞Q 𝑞 ∈ (1st𝐶) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 920   = wceq 1285  wex 1422  wcel 1434  wrex 2354  {crab 2357  wss 2984  cop 3425   class class class wbr 3811  cfv 4969  (class class class)co 5591  1st c1st 5844  2nd c2nd 5845  Qcnq 6742   +Q cplq 6744   <Q cltq 6747  Pcnp 6753  <P cltp 6757
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-eprel 4080  df-id 4084  df-iord 4157  df-on 4159  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-1st 5846  df-2nd 5847  df-recs 6002  df-irdg 6067  df-1o 6113  df-oadd 6117  df-omul 6118  df-er 6222  df-ec 6224  df-qs 6228  df-ni 6766  df-pli 6767  df-mi 6768  df-lti 6769  df-plpq 6806  df-mpq 6807  df-enq 6809  df-nqqs 6810  df-plqqs 6811  df-mqqs 6812  df-1nqqs 6813  df-ltnqqs 6815  df-inp 6928  df-iltp 6932
This theorem is referenced by:  ltexprlempr  7070
  Copyright terms: Public domain W3C validator