ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemm GIF version

Theorem ltexprlemm 7660
Description: Our constructed difference is inhabited. Lemma for ltexpri 7673. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemm (𝐴<P 𝐵 → (∃𝑞Q 𝑞 ∈ (1st𝐶) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝑟,𝐴   𝑥,𝐵,𝑦,𝑞,𝑟   𝑥,𝐶,𝑦,𝑞,𝑟

Proof of Theorem ltexprlemm
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ltrelpr 7565 . . . . . . . . 9 <P ⊆ (P × P)
21brel 4711 . . . . . . . 8 (𝐴<P 𝐵 → (𝐴P𝐵P))
3 ltdfpr 7566 . . . . . . . . 9 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵))))
43biimpd 144 . . . . . . . 8 ((𝐴P𝐵P) → (𝐴<P 𝐵 → ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵))))
52, 4mpcom 36 . . . . . . 7 (𝐴<P 𝐵 → ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)))
6 simprrl 539 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ (𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)))) → 𝑦 ∈ (2nd𝐴))
72simprd 114 . . . . . . . . . . . . 13 (𝐴<P 𝐵𝐵P)
8 prop 7535 . . . . . . . . . . . . . . . . . 18 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
9 prnmaxl 7548 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑦 ∈ (1st𝐵)) → ∃𝑤 ∈ (1st𝐵)𝑦 <Q 𝑤)
108, 9sylan 283 . . . . . . . . . . . . . . . . 17 ((𝐵P𝑦 ∈ (1st𝐵)) → ∃𝑤 ∈ (1st𝐵)𝑦 <Q 𝑤)
11 ltexnqi 7469 . . . . . . . . . . . . . . . . . 18 (𝑦 <Q 𝑤 → ∃𝑞Q (𝑦 +Q 𝑞) = 𝑤)
1211reximi 2591 . . . . . . . . . . . . . . . . 17 (∃𝑤 ∈ (1st𝐵)𝑦 <Q 𝑤 → ∃𝑤 ∈ (1st𝐵)∃𝑞Q (𝑦 +Q 𝑞) = 𝑤)
1310, 12syl 14 . . . . . . . . . . . . . . . 16 ((𝐵P𝑦 ∈ (1st𝐵)) → ∃𝑤 ∈ (1st𝐵)∃𝑞Q (𝑦 +Q 𝑞) = 𝑤)
14 df-rex 2478 . . . . . . . . . . . . . . . 16 (∃𝑤 ∈ (1st𝐵)∃𝑞Q (𝑦 +Q 𝑞) = 𝑤 ↔ ∃𝑤(𝑤 ∈ (1st𝐵) ∧ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑤))
1513, 14sylib 122 . . . . . . . . . . . . . . 15 ((𝐵P𝑦 ∈ (1st𝐵)) → ∃𝑤(𝑤 ∈ (1st𝐵) ∧ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑤))
16 r19.42v 2651 . . . . . . . . . . . . . . . 16 (∃𝑞Q (𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) ↔ (𝑤 ∈ (1st𝐵) ∧ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑤))
1716exbii 1616 . . . . . . . . . . . . . . 15 (∃𝑤𝑞Q (𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) ↔ ∃𝑤(𝑤 ∈ (1st𝐵) ∧ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑤))
1815, 17sylibr 134 . . . . . . . . . . . . . 14 ((𝐵P𝑦 ∈ (1st𝐵)) → ∃𝑤𝑞Q (𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤))
19 eleq1 2256 . . . . . . . . . . . . . . . . 17 ((𝑦 +Q 𝑞) = 𝑤 → ((𝑦 +Q 𝑞) ∈ (1st𝐵) ↔ 𝑤 ∈ (1st𝐵)))
2019biimparc 299 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) → (𝑦 +Q 𝑞) ∈ (1st𝐵))
2120reximi 2591 . . . . . . . . . . . . . . 15 (∃𝑞Q (𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
2221exlimiv 1609 . . . . . . . . . . . . . 14 (∃𝑤𝑞Q (𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
2318, 22syl 14 . . . . . . . . . . . . 13 ((𝐵P𝑦 ∈ (1st𝐵)) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
247, 23sylan 283 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑦 ∈ (1st𝐵)) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
2524adantrl 478 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵))) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
2625adantrl 478 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ (𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)))) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
276, 26jca 306 . . . . . . . . 9 ((𝐴<P 𝐵 ∧ (𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)))) → (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵)))
2827expr 375 . . . . . . . 8 ((𝐴<P 𝐵𝑦Q) → ((𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)) → (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))))
2928reximdva 2596 . . . . . . 7 (𝐴<P 𝐵 → (∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)) → ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))))
305, 29mpd 13 . . . . . 6 (𝐴<P 𝐵 → ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵)))
31 r19.42v 2651 . . . . . . 7 (∃𝑞Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵)))
3231rexbii 2501 . . . . . 6 (∃𝑦Q𝑞Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵)))
3330, 32sylibr 134 . . . . 5 (𝐴<P 𝐵 → ∃𝑦Q𝑞Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
34 rexcom 2658 . . . . 5 (∃𝑦Q𝑞Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q𝑦Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
3533, 34sylib 122 . . . 4 (𝐴<P 𝐵 → ∃𝑞Q𝑦Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
362simpld 112 . . . . . . . . . . . 12 (𝐴<P 𝐵𝐴P)
37 prop 7535 . . . . . . . . . . . . 13 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
38 elprnqu 7542 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
3937, 38sylan 283 . . . . . . . . . . . 12 ((𝐴P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
4036, 39sylan 283 . . . . . . . . . . 11 ((𝐴<P 𝐵𝑦 ∈ (2nd𝐴)) → 𝑦Q)
4140ex 115 . . . . . . . . . 10 (𝐴<P 𝐵 → (𝑦 ∈ (2nd𝐴) → 𝑦Q))
4241pm4.71rd 394 . . . . . . . . 9 (𝐴<P 𝐵 → (𝑦 ∈ (2nd𝐴) ↔ (𝑦Q𝑦 ∈ (2nd𝐴))))
4342anbi1d 465 . . . . . . . 8 (𝐴<P 𝐵 → ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ((𝑦Q𝑦 ∈ (2nd𝐴)) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
44 anass 401 . . . . . . . 8 (((𝑦Q𝑦 ∈ (2nd𝐴)) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ (𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
4543, 44bitrdi 196 . . . . . . 7 (𝐴<P 𝐵 → ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ (𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
4645exbidv 1836 . . . . . 6 (𝐴<P 𝐵 → (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑦(𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
4746rexbidv 2495 . . . . 5 (𝐴<P 𝐵 → (∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q𝑦(𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
48 df-rex 2478 . . . . . 6 (∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑦(𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
4948rexbii 2501 . . . . 5 (∃𝑞Q𝑦Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q𝑦(𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
5047, 49bitr4di 198 . . . 4 (𝐴<P 𝐵 → (∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q𝑦Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
5135, 50mpbird 167 . . 3 (𝐴<P 𝐵 → ∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
52 ltexprlem.1 . . . . . 6 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
5352ltexprlemell 7658 . . . . 5 (𝑞 ∈ (1st𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
5453rexbii 2501 . . . 4 (∃𝑞Q 𝑞 ∈ (1st𝐶) ↔ ∃𝑞Q (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
55 ssid 3199 . . . . 5 QQ
56 rexss 3246 . . . . 5 (QQ → (∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
5755, 56ax-mp 5 . . . 4 (∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
5854, 57bitr4i 187 . . 3 (∃𝑞Q 𝑞 ∈ (1st𝐶) ↔ ∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
5951, 58sylibr 134 . 2 (𝐴<P 𝐵 → ∃𝑞Q 𝑞 ∈ (1st𝐶))
60 nfv 1539 . . 3 𝑟 𝐴<P 𝐵
61 nfre1 2537 . . 3 𝑟𝑟Q 𝑟 ∈ (2nd𝐶)
62 prmu 7538 . . . . 5 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ P → ∃𝑟Q 𝑟 ∈ (2nd𝐵))
63 rexex 2540 . . . . 5 (∃𝑟Q 𝑟 ∈ (2nd𝐵) → ∃𝑟 𝑟 ∈ (2nd𝐵))
6462, 63syl 14 . . . 4 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ P → ∃𝑟 𝑟 ∈ (2nd𝐵))
657, 8, 643syl 17 . . 3 (𝐴<P 𝐵 → ∃𝑟 𝑟 ∈ (2nd𝐵))
66 elprnqu 7542 . . . . . . 7 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑟 ∈ (2nd𝐵)) → 𝑟Q)
678, 66sylan 283 . . . . . 6 ((𝐵P𝑟 ∈ (2nd𝐵)) → 𝑟Q)
687, 67sylan 283 . . . . 5 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → 𝑟Q)
69 prml 7537 . . . . . . . . 9 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑦Q 𝑦 ∈ (1st𝐴))
7037, 69syl 14 . . . . . . . 8 (𝐴P → ∃𝑦Q 𝑦 ∈ (1st𝐴))
71 rexex 2540 . . . . . . . 8 (∃𝑦Q 𝑦 ∈ (1st𝐴) → ∃𝑦 𝑦 ∈ (1st𝐴))
7236, 70, 713syl 17 . . . . . . 7 (𝐴<P 𝐵 → ∃𝑦 𝑦 ∈ (1st𝐴))
7372adantr 276 . . . . . 6 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → ∃𝑦 𝑦 ∈ (1st𝐴))
74683adant3 1019 . . . . . . . . 9 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → 𝑟Q)
75 simp3 1001 . . . . . . . . . 10 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦 ∈ (1st𝐴))
76 elprnql 7541 . . . . . . . . . . . . . . 15 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴)) → 𝑦Q)
7737, 76sylan 283 . . . . . . . . . . . . . 14 ((𝐴P𝑦 ∈ (1st𝐴)) → 𝑦Q)
7836, 77sylan 283 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑦 ∈ (1st𝐴)) → 𝑦Q)
79783adant2 1018 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦Q)
80 addcomnqg 7441 . . . . . . . . . . . 12 ((𝑟Q𝑦Q) → (𝑟 +Q 𝑦) = (𝑦 +Q 𝑟))
8174, 79, 80syl2anc 411 . . . . . . . . . . 11 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → (𝑟 +Q 𝑦) = (𝑦 +Q 𝑟))
82 ltaddnq 7467 . . . . . . . . . . . . 13 ((𝑟Q𝑦Q) → 𝑟 <Q (𝑟 +Q 𝑦))
8374, 79, 82syl2anc 411 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → 𝑟 <Q (𝑟 +Q 𝑦))
84 prcunqu 7545 . . . . . . . . . . . . . . 15 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑟 ∈ (2nd𝐵)) → (𝑟 <Q (𝑟 +Q 𝑦) → (𝑟 +Q 𝑦) ∈ (2nd𝐵)))
858, 84sylan 283 . . . . . . . . . . . . . 14 ((𝐵P𝑟 ∈ (2nd𝐵)) → (𝑟 <Q (𝑟 +Q 𝑦) → (𝑟 +Q 𝑦) ∈ (2nd𝐵)))
867, 85sylan 283 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → (𝑟 <Q (𝑟 +Q 𝑦) → (𝑟 +Q 𝑦) ∈ (2nd𝐵)))
87863adant3 1019 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → (𝑟 <Q (𝑟 +Q 𝑦) → (𝑟 +Q 𝑦) ∈ (2nd𝐵)))
8883, 87mpd 13 . . . . . . . . . . 11 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → (𝑟 +Q 𝑦) ∈ (2nd𝐵))
8981, 88eqeltrrd 2271 . . . . . . . . . 10 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → (𝑦 +Q 𝑟) ∈ (2nd𝐵))
90 19.8a 1601 . . . . . . . . . 10 ((𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))
9175, 89, 90syl2anc 411 . . . . . . . . 9 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))
9274, 91jca 306 . . . . . . . 8 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
9352ltexprlemelu 7659 . . . . . . . 8 (𝑟 ∈ (2nd𝐶) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
9492, 93sylibr 134 . . . . . . 7 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → 𝑟 ∈ (2nd𝐶))
95943expa 1205 . . . . . 6 (((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) ∧ 𝑦 ∈ (1st𝐴)) → 𝑟 ∈ (2nd𝐶))
9673, 95exlimddv 1910 . . . . 5 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → 𝑟 ∈ (2nd𝐶))
97 19.8a 1601 . . . . 5 ((𝑟Q𝑟 ∈ (2nd𝐶)) → ∃𝑟(𝑟Q𝑟 ∈ (2nd𝐶)))
9868, 96, 97syl2anc 411 . . . 4 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → ∃𝑟(𝑟Q𝑟 ∈ (2nd𝐶)))
99 df-rex 2478 . . . 4 (∃𝑟Q 𝑟 ∈ (2nd𝐶) ↔ ∃𝑟(𝑟Q𝑟 ∈ (2nd𝐶)))
10098, 99sylibr 134 . . 3 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → ∃𝑟Q 𝑟 ∈ (2nd𝐶))
10160, 61, 65, 100exlimdd 1883 . 2 (𝐴<P 𝐵 → ∃𝑟Q 𝑟 ∈ (2nd𝐶))
10259, 101jca 306 1 (𝐴<P 𝐵 → (∃𝑞Q 𝑞 ∈ (1st𝐶) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1503  wcel 2164  wrex 2473  {crab 2476  wss 3153  cop 3621   class class class wbr 4029  cfv 5254  (class class class)co 5918  1st c1st 6191  2nd c2nd 6192  Qcnq 7340   +Q cplq 7342   <Q cltq 7345  Pcnp 7351  <P cltp 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-ltnqqs 7413  df-inp 7526  df-iltp 7530
This theorem is referenced by:  ltexprlempr  7668
  Copyright terms: Public domain W3C validator