ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemm GIF version

Theorem ltexprlemm 7590
Description: Our constructed difference is inhabited. Lemma for ltexpri 7603. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
Assertion
Ref Expression
ltexprlemm (𝐴<P 𝐵 → (∃𝑞Q 𝑞 ∈ (1st𝐶) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝑟,𝐴   𝑥,𝐵,𝑦,𝑞,𝑟   𝑥,𝐶,𝑦,𝑞,𝑟

Proof of Theorem ltexprlemm
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ltrelpr 7495 . . . . . . . . 9 <P ⊆ (P × P)
21brel 4675 . . . . . . . 8 (𝐴<P 𝐵 → (𝐴P𝐵P))
3 ltdfpr 7496 . . . . . . . . 9 ((𝐴P𝐵P) → (𝐴<P 𝐵 ↔ ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵))))
43biimpd 144 . . . . . . . 8 ((𝐴P𝐵P) → (𝐴<P 𝐵 → ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵))))
52, 4mpcom 36 . . . . . . 7 (𝐴<P 𝐵 → ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)))
6 simprrl 539 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ (𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)))) → 𝑦 ∈ (2nd𝐴))
72simprd 114 . . . . . . . . . . . . 13 (𝐴<P 𝐵𝐵P)
8 prop 7465 . . . . . . . . . . . . . . . . . 18 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
9 prnmaxl 7478 . . . . . . . . . . . . . . . . . 18 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑦 ∈ (1st𝐵)) → ∃𝑤 ∈ (1st𝐵)𝑦 <Q 𝑤)
108, 9sylan 283 . . . . . . . . . . . . . . . . 17 ((𝐵P𝑦 ∈ (1st𝐵)) → ∃𝑤 ∈ (1st𝐵)𝑦 <Q 𝑤)
11 ltexnqi 7399 . . . . . . . . . . . . . . . . . 18 (𝑦 <Q 𝑤 → ∃𝑞Q (𝑦 +Q 𝑞) = 𝑤)
1211reximi 2574 . . . . . . . . . . . . . . . . 17 (∃𝑤 ∈ (1st𝐵)𝑦 <Q 𝑤 → ∃𝑤 ∈ (1st𝐵)∃𝑞Q (𝑦 +Q 𝑞) = 𝑤)
1310, 12syl 14 . . . . . . . . . . . . . . . 16 ((𝐵P𝑦 ∈ (1st𝐵)) → ∃𝑤 ∈ (1st𝐵)∃𝑞Q (𝑦 +Q 𝑞) = 𝑤)
14 df-rex 2461 . . . . . . . . . . . . . . . 16 (∃𝑤 ∈ (1st𝐵)∃𝑞Q (𝑦 +Q 𝑞) = 𝑤 ↔ ∃𝑤(𝑤 ∈ (1st𝐵) ∧ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑤))
1513, 14sylib 122 . . . . . . . . . . . . . . 15 ((𝐵P𝑦 ∈ (1st𝐵)) → ∃𝑤(𝑤 ∈ (1st𝐵) ∧ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑤))
16 r19.42v 2634 . . . . . . . . . . . . . . . 16 (∃𝑞Q (𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) ↔ (𝑤 ∈ (1st𝐵) ∧ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑤))
1716exbii 1605 . . . . . . . . . . . . . . 15 (∃𝑤𝑞Q (𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) ↔ ∃𝑤(𝑤 ∈ (1st𝐵) ∧ ∃𝑞Q (𝑦 +Q 𝑞) = 𝑤))
1815, 17sylibr 134 . . . . . . . . . . . . . 14 ((𝐵P𝑦 ∈ (1st𝐵)) → ∃𝑤𝑞Q (𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤))
19 eleq1 2240 . . . . . . . . . . . . . . . . 17 ((𝑦 +Q 𝑞) = 𝑤 → ((𝑦 +Q 𝑞) ∈ (1st𝐵) ↔ 𝑤 ∈ (1st𝐵)))
2019biimparc 299 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) → (𝑦 +Q 𝑞) ∈ (1st𝐵))
2120reximi 2574 . . . . . . . . . . . . . . 15 (∃𝑞Q (𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
2221exlimiv 1598 . . . . . . . . . . . . . 14 (∃𝑤𝑞Q (𝑤 ∈ (1st𝐵) ∧ (𝑦 +Q 𝑞) = 𝑤) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
2318, 22syl 14 . . . . . . . . . . . . 13 ((𝐵P𝑦 ∈ (1st𝐵)) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
247, 23sylan 283 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑦 ∈ (1st𝐵)) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
2524adantrl 478 . . . . . . . . . . 11 ((𝐴<P 𝐵 ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵))) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
2625adantrl 478 . . . . . . . . . 10 ((𝐴<P 𝐵 ∧ (𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)))) → ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))
276, 26jca 306 . . . . . . . . 9 ((𝐴<P 𝐵 ∧ (𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)))) → (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵)))
2827expr 375 . . . . . . . 8 ((𝐴<P 𝐵𝑦Q) → ((𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)) → (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))))
2928reximdva 2579 . . . . . . 7 (𝐴<P 𝐵 → (∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ 𝑦 ∈ (1st𝐵)) → ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵))))
305, 29mpd 13 . . . . . 6 (𝐴<P 𝐵 → ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵)))
31 r19.42v 2634 . . . . . . 7 (∃𝑞Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵)))
3231rexbii 2484 . . . . . 6 (∃𝑦Q𝑞Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ ∃𝑞Q (𝑦 +Q 𝑞) ∈ (1st𝐵)))
3330, 32sylibr 134 . . . . 5 (𝐴<P 𝐵 → ∃𝑦Q𝑞Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
34 rexcom 2641 . . . . 5 (∃𝑦Q𝑞Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q𝑦Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
3533, 34sylib 122 . . . 4 (𝐴<P 𝐵 → ∃𝑞Q𝑦Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
362simpld 112 . . . . . . . . . . . 12 (𝐴<P 𝐵𝐴P)
37 prop 7465 . . . . . . . . . . . . 13 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
38 elprnqu 7472 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
3937, 38sylan 283 . . . . . . . . . . . 12 ((𝐴P𝑦 ∈ (2nd𝐴)) → 𝑦Q)
4036, 39sylan 283 . . . . . . . . . . 11 ((𝐴<P 𝐵𝑦 ∈ (2nd𝐴)) → 𝑦Q)
4140ex 115 . . . . . . . . . 10 (𝐴<P 𝐵 → (𝑦 ∈ (2nd𝐴) → 𝑦Q))
4241pm4.71rd 394 . . . . . . . . 9 (𝐴<P 𝐵 → (𝑦 ∈ (2nd𝐴) ↔ (𝑦Q𝑦 ∈ (2nd𝐴))))
4342anbi1d 465 . . . . . . . 8 (𝐴<P 𝐵 → ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ((𝑦Q𝑦 ∈ (2nd𝐴)) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
44 anass 401 . . . . . . . 8 (((𝑦Q𝑦 ∈ (2nd𝐴)) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ (𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
4543, 44bitrdi 196 . . . . . . 7 (𝐴<P 𝐵 → ((𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ (𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
4645exbidv 1825 . . . . . 6 (𝐴<P 𝐵 → (∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑦(𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
4746rexbidv 2478 . . . . 5 (𝐴<P 𝐵 → (∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q𝑦(𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
48 df-rex 2461 . . . . . 6 (∃𝑦Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑦(𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
4948rexbii 2484 . . . . 5 (∃𝑞Q𝑦Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q𝑦(𝑦Q ∧ (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
5047, 49bitr4di 198 . . . 4 (𝐴<P 𝐵 → (∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q𝑦Q (𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
5135, 50mpbird 167 . . 3 (𝐴<P 𝐵 → ∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
52 ltexprlem.1 . . . . . 6 𝐶 = ⟨{𝑥Q ∣ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑥) ∈ (1st𝐵))}, {𝑥Q ∣ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑥) ∈ (2nd𝐵))}⟩
5352ltexprlemell 7588 . . . . 5 (𝑞 ∈ (1st𝐶) ↔ (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
5453rexbii 2484 . . . 4 (∃𝑞Q 𝑞 ∈ (1st𝐶) ↔ ∃𝑞Q (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
55 ssid 3175 . . . . 5 QQ
56 rexss 3222 . . . . 5 (QQ → (∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))))
5755, 56ax-mp 5 . . . 4 (∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)) ↔ ∃𝑞Q (𝑞Q ∧ ∃𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵))))
5854, 57bitr4i 187 . . 3 (∃𝑞Q 𝑞 ∈ (1st𝐶) ↔ ∃𝑞Q𝑦(𝑦 ∈ (2nd𝐴) ∧ (𝑦 +Q 𝑞) ∈ (1st𝐵)))
5951, 58sylibr 134 . 2 (𝐴<P 𝐵 → ∃𝑞Q 𝑞 ∈ (1st𝐶))
60 nfv 1528 . . 3 𝑟 𝐴<P 𝐵
61 nfre1 2520 . . 3 𝑟𝑟Q 𝑟 ∈ (2nd𝐶)
62 prmu 7468 . . . . 5 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ P → ∃𝑟Q 𝑟 ∈ (2nd𝐵))
63 rexex 2523 . . . . 5 (∃𝑟Q 𝑟 ∈ (2nd𝐵) → ∃𝑟 𝑟 ∈ (2nd𝐵))
6462, 63syl 14 . . . 4 (⟨(1st𝐵), (2nd𝐵)⟩ ∈ P → ∃𝑟 𝑟 ∈ (2nd𝐵))
657, 8, 643syl 17 . . 3 (𝐴<P 𝐵 → ∃𝑟 𝑟 ∈ (2nd𝐵))
66 elprnqu 7472 . . . . . . 7 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑟 ∈ (2nd𝐵)) → 𝑟Q)
678, 66sylan 283 . . . . . 6 ((𝐵P𝑟 ∈ (2nd𝐵)) → 𝑟Q)
687, 67sylan 283 . . . . 5 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → 𝑟Q)
69 prml 7467 . . . . . . . . 9 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑦Q 𝑦 ∈ (1st𝐴))
7037, 69syl 14 . . . . . . . 8 (𝐴P → ∃𝑦Q 𝑦 ∈ (1st𝐴))
71 rexex 2523 . . . . . . . 8 (∃𝑦Q 𝑦 ∈ (1st𝐴) → ∃𝑦 𝑦 ∈ (1st𝐴))
7236, 70, 713syl 17 . . . . . . 7 (𝐴<P 𝐵 → ∃𝑦 𝑦 ∈ (1st𝐴))
7372adantr 276 . . . . . 6 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → ∃𝑦 𝑦 ∈ (1st𝐴))
74683adant3 1017 . . . . . . . . 9 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → 𝑟Q)
75 simp3 999 . . . . . . . . . 10 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦 ∈ (1st𝐴))
76 elprnql 7471 . . . . . . . . . . . . . . 15 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑦 ∈ (1st𝐴)) → 𝑦Q)
7737, 76sylan 283 . . . . . . . . . . . . . 14 ((𝐴P𝑦 ∈ (1st𝐴)) → 𝑦Q)
7836, 77sylan 283 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑦 ∈ (1st𝐴)) → 𝑦Q)
79783adant2 1016 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → 𝑦Q)
80 addcomnqg 7371 . . . . . . . . . . . 12 ((𝑟Q𝑦Q) → (𝑟 +Q 𝑦) = (𝑦 +Q 𝑟))
8174, 79, 80syl2anc 411 . . . . . . . . . . 11 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → (𝑟 +Q 𝑦) = (𝑦 +Q 𝑟))
82 ltaddnq 7397 . . . . . . . . . . . . 13 ((𝑟Q𝑦Q) → 𝑟 <Q (𝑟 +Q 𝑦))
8374, 79, 82syl2anc 411 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → 𝑟 <Q (𝑟 +Q 𝑦))
84 prcunqu 7475 . . . . . . . . . . . . . . 15 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑟 ∈ (2nd𝐵)) → (𝑟 <Q (𝑟 +Q 𝑦) → (𝑟 +Q 𝑦) ∈ (2nd𝐵)))
858, 84sylan 283 . . . . . . . . . . . . . 14 ((𝐵P𝑟 ∈ (2nd𝐵)) → (𝑟 <Q (𝑟 +Q 𝑦) → (𝑟 +Q 𝑦) ∈ (2nd𝐵)))
867, 85sylan 283 . . . . . . . . . . . . 13 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → (𝑟 <Q (𝑟 +Q 𝑦) → (𝑟 +Q 𝑦) ∈ (2nd𝐵)))
87863adant3 1017 . . . . . . . . . . . 12 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → (𝑟 <Q (𝑟 +Q 𝑦) → (𝑟 +Q 𝑦) ∈ (2nd𝐵)))
8883, 87mpd 13 . . . . . . . . . . 11 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → (𝑟 +Q 𝑦) ∈ (2nd𝐵))
8981, 88eqeltrrd 2255 . . . . . . . . . 10 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → (𝑦 +Q 𝑟) ∈ (2nd𝐵))
90 19.8a 1590 . . . . . . . . . 10 ((𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))
9175, 89, 90syl2anc 411 . . . . . . . . 9 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵)))
9274, 91jca 306 . . . . . . . 8 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
9352ltexprlemelu 7589 . . . . . . . 8 (𝑟 ∈ (2nd𝐶) ↔ (𝑟Q ∧ ∃𝑦(𝑦 ∈ (1st𝐴) ∧ (𝑦 +Q 𝑟) ∈ (2nd𝐵))))
9492, 93sylibr 134 . . . . . . 7 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵) ∧ 𝑦 ∈ (1st𝐴)) → 𝑟 ∈ (2nd𝐶))
95943expa 1203 . . . . . 6 (((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) ∧ 𝑦 ∈ (1st𝐴)) → 𝑟 ∈ (2nd𝐶))
9673, 95exlimddv 1898 . . . . 5 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → 𝑟 ∈ (2nd𝐶))
97 19.8a 1590 . . . . 5 ((𝑟Q𝑟 ∈ (2nd𝐶)) → ∃𝑟(𝑟Q𝑟 ∈ (2nd𝐶)))
9868, 96, 97syl2anc 411 . . . 4 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → ∃𝑟(𝑟Q𝑟 ∈ (2nd𝐶)))
99 df-rex 2461 . . . 4 (∃𝑟Q 𝑟 ∈ (2nd𝐶) ↔ ∃𝑟(𝑟Q𝑟 ∈ (2nd𝐶)))
10098, 99sylibr 134 . . 3 ((𝐴<P 𝐵𝑟 ∈ (2nd𝐵)) → ∃𝑟Q 𝑟 ∈ (2nd𝐶))
10160, 61, 65, 100exlimdd 1872 . 2 (𝐴<P 𝐵 → ∃𝑟Q 𝑟 ∈ (2nd𝐶))
10259, 101jca 306 1 (𝐴<P 𝐵 → (∃𝑞Q 𝑞 ∈ (1st𝐶) ∧ ∃𝑟Q 𝑟 ∈ (2nd𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wex 1492  wcel 2148  wrex 2456  {crab 2459  wss 3129  cop 3594   class class class wbr 4000  cfv 5212  (class class class)co 5869  1st c1st 6133  2nd c2nd 6134  Qcnq 7270   +Q cplq 7272   <Q cltq 7275  Pcnp 7281  <P cltp 7285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-eprel 4286  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-1o 6411  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-pli 7295  df-mi 7296  df-lti 7297  df-plpq 7334  df-mpq 7335  df-enq 7337  df-nqqs 7338  df-plqqs 7339  df-mqqs 7340  df-1nqqs 7341  df-ltnqqs 7343  df-inp 7456  df-iltp 7460
This theorem is referenced by:  ltexprlempr  7598
  Copyright terms: Public domain W3C validator