Proof of Theorem ovmpodf
| Step | Hyp | Ref
 | Expression | 
| 1 |   | nfv 1542 | 
. 2
⊢
Ⅎ𝑥𝜑 | 
| 2 |   | ovmpodf.5 | 
. . . 4
⊢
Ⅎ𝑥𝐹 | 
| 3 |   | nfmpo1 5989 | 
. . . 4
⊢
Ⅎ𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | 
| 4 | 2, 3 | nfeq 2347 | 
. . 3
⊢
Ⅎ𝑥 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | 
| 5 |   | ovmpodf.6 | 
. . 3
⊢
Ⅎ𝑥𝜓 | 
| 6 | 4, 5 | nfim 1586 | 
. 2
⊢
Ⅎ𝑥(𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → 𝜓) | 
| 7 |   | ovmpodf.1 | 
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝐶) | 
| 8 |   | elex 2774 | 
. . . 4
⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | 
| 9 | 7, 8 | syl 14 | 
. . 3
⊢ (𝜑 → 𝐴 ∈ V) | 
| 10 |   | isset 2769 | 
. . 3
⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | 
| 11 | 9, 10 | sylib 122 | 
. 2
⊢ (𝜑 → ∃𝑥 𝑥 = 𝐴) | 
| 12 |   | ovmpodf.2 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ 𝐷) | 
| 13 |   | elex 2774 | 
. . . . 5
⊢ (𝐵 ∈ 𝐷 → 𝐵 ∈ V) | 
| 14 | 12, 13 | syl 14 | 
. . . 4
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐵 ∈ V) | 
| 15 |   | isset 2769 | 
. . . 4
⊢ (𝐵 ∈ V ↔ ∃𝑦 𝑦 = 𝐵) | 
| 16 | 14, 15 | sylib 122 | 
. . 3
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → ∃𝑦 𝑦 = 𝐵) | 
| 17 |   | nfv 1542 | 
. . . 4
⊢
Ⅎ𝑦(𝜑 ∧ 𝑥 = 𝐴) | 
| 18 |   | ovmpodf.7 | 
. . . . . 6
⊢
Ⅎ𝑦𝐹 | 
| 19 |   | nfmpo2 5990 | 
. . . . . 6
⊢
Ⅎ𝑦(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | 
| 20 | 18, 19 | nfeq 2347 | 
. . . . 5
⊢
Ⅎ𝑦 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | 
| 21 |   | ovmpodf.8 | 
. . . . 5
⊢
Ⅎ𝑦𝜓 | 
| 22 | 20, 21 | nfim 1586 | 
. . . 4
⊢
Ⅎ𝑦(𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → 𝜓) | 
| 23 |   | oveq 5928 | 
. . . . . 6
⊢ (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → (𝐴𝐹𝐵) = (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵)) | 
| 24 |   | simprl 529 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑥 = 𝐴) | 
| 25 |   | simprr 531 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑦 = 𝐵) | 
| 26 | 24, 25 | oveq12d 5940 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝑦) = (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵)) | 
| 27 | 7 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝐴 ∈ 𝐶) | 
| 28 | 24, 27 | eqeltrd 2273 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑥 ∈ 𝐶) | 
| 29 | 12 | adantrr 479 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝐵 ∈ 𝐷) | 
| 30 | 25, 29 | eqeltrd 2273 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑦 ∈ 𝐷) | 
| 31 |   | ovmpodf.3 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 ∈ 𝑉) | 
| 32 |   | eqid 2196 | 
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | 
| 33 | 32 | ovmpt4g 6045 | 
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ∧ 𝑅 ∈ 𝑉) → (𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝑦) = 𝑅) | 
| 34 | 28, 30, 31, 33 | syl3anc 1249 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝑥(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝑦) = 𝑅) | 
| 35 | 26, 34 | eqtr3d 2231 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) = 𝑅) | 
| 36 | 35 | eqeq2d 2208 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) ↔ (𝐴𝐹𝐵) = 𝑅)) | 
| 37 |   | ovmpodf.4 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = 𝑅 → 𝜓)) | 
| 38 | 36, 37 | sylbid 150 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = (𝐴(𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)𝐵) → 𝜓)) | 
| 39 | 23, 38 | syl5 32 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → 𝜓)) | 
| 40 | 39 | expr 375 | 
. . . 4
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝑦 = 𝐵 → (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → 𝜓))) | 
| 41 | 17, 22, 40 | exlimd 1611 | 
. . 3
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (∃𝑦 𝑦 = 𝐵 → (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → 𝜓))) | 
| 42 | 16, 41 | mpd 13 | 
. 2
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → 𝜓)) | 
| 43 | 1, 6, 11, 42 | exlimdd 1886 | 
1
⊢ (𝜑 → (𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) → 𝜓)) |