![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exists2 | GIF version |
Description: A condition implying that at least two things exist. (Contributed by NM, 10-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
exists2 | ⊢ ((∃𝑥𝜑 ∧ ∃𝑥 ¬ 𝜑) → ¬ ∃!𝑥 𝑥 = 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbeu1 2046 | . . . . . 6 ⊢ (∃!𝑥 𝑥 = 𝑥 → ∀𝑥∃!𝑥 𝑥 = 𝑥) | |
2 | hba1 1550 | . . . . . 6 ⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | |
3 | exists1 2132 | . . . . . . 7 ⊢ (∃!𝑥 𝑥 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦) | |
4 | ax16 1823 | . . . . . . 7 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) | |
5 | 3, 4 | sylbi 121 | . . . . . 6 ⊢ (∃!𝑥 𝑥 = 𝑥 → (𝜑 → ∀𝑥𝜑)) |
6 | 1, 2, 5 | exlimdh 1606 | . . . . 5 ⊢ (∃!𝑥 𝑥 = 𝑥 → (∃𝑥𝜑 → ∀𝑥𝜑)) |
7 | 6 | com12 30 | . . . 4 ⊢ (∃𝑥𝜑 → (∃!𝑥 𝑥 = 𝑥 → ∀𝑥𝜑)) |
8 | alexim 1655 | . . . 4 ⊢ (∀𝑥𝜑 → ¬ ∃𝑥 ¬ 𝜑) | |
9 | 7, 8 | syl6 33 | . . 3 ⊢ (∃𝑥𝜑 → (∃!𝑥 𝑥 = 𝑥 → ¬ ∃𝑥 ¬ 𝜑)) |
10 | 9 | con2d 625 | . 2 ⊢ (∃𝑥𝜑 → (∃𝑥 ¬ 𝜑 → ¬ ∃!𝑥 𝑥 = 𝑥)) |
11 | 10 | imp 124 | 1 ⊢ ((∃𝑥𝜑 ∧ ∃𝑥 ¬ 𝜑) → ¬ ∃!𝑥 𝑥 = 𝑥) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∀wal 1361 = wceq 1363 ∃wex 1502 ∃!weu 2036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |