| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimdv | GIF version | ||
| Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| exlimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| exlimdv | ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1550 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | ax-17 1550 | . 2 ⊢ (𝜒 → ∀𝑥𝜒) | |
| 3 | exlimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 1, 2, 3 | exlimdh 1620 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1471 ax-gen 1473 ax-ie2 1518 ax-17 1550 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v2 1844 exlimdvv 1922 exlimddv 1923 tpid3g 3753 sssnm 3801 pwntru 4251 euotd 4307 ralxfr2d 4519 rexxfr2d 4520 releldmb 4924 relelrnb 4925 elres 5004 iss 5014 imain 5365 elunirn 5848 ovmpt4g 6081 oprssdmm 6270 op1steq 6278 fo2ndf 6326 reldmtpos 6352 rntpos 6356 tfrlemibacc 6425 tfrlemibxssdm 6426 tfrlemibfn 6427 tfrexlem 6433 tfr1onlembacc 6441 tfr1onlembxssdm 6442 tfr1onlembfn 6443 tfrcllembacc 6454 tfrcllembxssdm 6455 tfrcllembfn 6456 map0g 6788 xpdom3m 6944 phplem4 6967 phpm 6977 findcard2 7001 findcard2s 7002 ac6sfi 7010 fiintim 7043 xpfi 7044 fidcenum 7073 ordiso 7153 ctmlemr 7225 ctm 7226 ctssdc 7230 pm54.43 7313 exmidfodomrlemim 7325 iftrueb01 7354 pw1m 7355 recclnq 7525 ltexnqq 7541 ltbtwnnqq 7548 recexprlemss1l 7768 recexprlemss1u 7769 negm 9756 ioom 10425 seq3f1olemp 10682 fiinfnf1o 10953 fihashf1rn 10955 climcau 11733 summodclem2 11768 zsumdc 11770 isumz 11775 fsumf1o 11776 fisumss 11778 fsumcl2lem 11784 fsumadd 11792 fsummulc2 11834 ntrivcvgap 11934 prodmodclem2 11963 zproddc 11965 prod1dc 11972 fprodf1o 11974 fprodssdc 11976 fprodmul 11977 nnmindc 12430 uzwodc 12433 pceu 12693 4sqlemafi 12793 4sqlem12 12800 ennnfone 12871 enctlem 12878 unct 12888 gsumfzval 13298 sgrpidmndm 13327 subrngintm 14049 subrgintm 14080 islssm 14194 lss0cl 14206 islidlm 14316 eltg3 14604 tgtop 14615 tgidm 14621 tgrest 14716 tgcn 14755 xblm 14964 dvfgg 15235 dvcnp2cntop 15246 2lgslem1 15643 dom1o 16067 pwtrufal 16075 |
| Copyright terms: Public domain | W3C validator |