Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exlimdv | GIF version |
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
exlimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
exlimdv | ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1514 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | ax-17 1514 | . 2 ⊢ (𝜒 → ∀𝑥𝜒) | |
3 | exlimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 1, 2, 3 | exlimdh 1584 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-5 1435 ax-gen 1437 ax-ie2 1482 ax-17 1514 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ax11v2 1808 exlimdvv 1885 exlimddv 1886 tpid3g 3691 sssnm 3734 pwntru 4178 euotd 4232 ralxfr2d 4442 rexxfr2d 4443 releldmb 4841 relelrnb 4842 elres 4920 iss 4930 imain 5270 elunirn 5734 ovmpt4g 5964 oprssdmm 6139 op1steq 6147 fo2ndf 6195 reldmtpos 6221 rntpos 6225 tfrlemibacc 6294 tfrlemibxssdm 6295 tfrlemibfn 6296 tfrexlem 6302 tfr1onlembacc 6310 tfr1onlembxssdm 6311 tfr1onlembfn 6312 tfrcllembacc 6323 tfrcllembxssdm 6324 tfrcllembfn 6325 map0g 6654 xpdom3m 6800 phplem4 6821 phpm 6831 findcard2 6855 findcard2s 6856 ac6sfi 6864 fiintim 6894 xpfi 6895 fidcenum 6921 ordiso 7001 ctmlemr 7073 ctm 7074 ctssdc 7078 pm54.43 7146 exmidfodomrlemim 7157 recclnq 7333 ltexnqq 7349 ltbtwnnqq 7356 recexprlemss1l 7576 recexprlemss1u 7577 negm 9553 ioom 10196 seq3f1olemp 10437 fiinfnf1o 10699 fihashf1rn 10702 climcau 11288 summodclem2 11323 zsumdc 11325 isumz 11330 fsumf1o 11331 fisumss 11333 fsumcl2lem 11339 fsumadd 11347 fsummulc2 11389 ntrivcvgap 11489 prodmodclem2 11518 zproddc 11520 prod1dc 11527 fprodf1o 11529 fprodssdc 11531 fprodmul 11532 nnmindc 11967 uzwodc 11970 pceu 12227 ennnfone 12358 enctlem 12365 unct 12375 eltg3 12697 tgtop 12708 tgidm 12714 tgrest 12809 tgcn 12848 xblm 13057 dvfgg 13297 dvcnp2cntop 13303 pwtrufal 13877 |
Copyright terms: Public domain | W3C validator |