| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimdv | GIF version | ||
| Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| exlimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| exlimdv | ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1540 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | ax-17 1540 | . 2 ⊢ (𝜒 → ∀𝑥𝜒) | |
| 3 | exlimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 1, 2, 3 | exlimdh 1610 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v2 1834 exlimdvv 1912 exlimddv 1913 tpid3g 3738 sssnm 3785 pwntru 4233 euotd 4288 ralxfr2d 4500 rexxfr2d 4501 releldmb 4904 relelrnb 4905 elres 4983 iss 4993 imain 5341 elunirn 5816 ovmpt4g 6049 oprssdmm 6238 op1steq 6246 fo2ndf 6294 reldmtpos 6320 rntpos 6324 tfrlemibacc 6393 tfrlemibxssdm 6394 tfrlemibfn 6395 tfrexlem 6401 tfr1onlembacc 6409 tfr1onlembxssdm 6410 tfr1onlembfn 6411 tfrcllembacc 6422 tfrcllembxssdm 6423 tfrcllembfn 6424 map0g 6756 xpdom3m 6902 phplem4 6925 phpm 6935 findcard2 6959 findcard2s 6960 ac6sfi 6968 fiintim 7001 xpfi 7002 fidcenum 7031 ordiso 7111 ctmlemr 7183 ctm 7184 ctssdc 7188 pm54.43 7271 exmidfodomrlemim 7282 recclnq 7478 ltexnqq 7494 ltbtwnnqq 7501 recexprlemss1l 7721 recexprlemss1u 7722 negm 9708 ioom 10369 seq3f1olemp 10626 fiinfnf1o 10897 fihashf1rn 10899 climcau 11531 summodclem2 11566 zsumdc 11568 isumz 11573 fsumf1o 11574 fisumss 11576 fsumcl2lem 11582 fsumadd 11590 fsummulc2 11632 ntrivcvgap 11732 prodmodclem2 11761 zproddc 11763 prod1dc 11770 fprodf1o 11772 fprodssdc 11774 fprodmul 11775 nnmindc 12228 uzwodc 12231 pceu 12491 4sqlemafi 12591 4sqlem12 12598 ennnfone 12669 enctlem 12676 unct 12686 gsumfzval 13095 sgrpidmndm 13124 subrngintm 13846 subrgintm 13877 islssm 13991 lss0cl 14003 islidlm 14113 eltg3 14401 tgtop 14412 tgidm 14418 tgrest 14513 tgcn 14552 xblm 14761 dvfgg 15032 dvcnp2cntop 15043 2lgslem1 15440 pwtrufal 15752 |
| Copyright terms: Public domain | W3C validator |