![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exlimdv | GIF version |
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
exlimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
exlimdv | ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1537 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | ax-17 1537 | . 2 ⊢ (𝜒 → ∀𝑥𝜒) | |
3 | exlimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 1, 2, 3 | exlimdh 1607 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1458 ax-gen 1460 ax-ie2 1505 ax-17 1537 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ax11v2 1831 exlimdvv 1909 exlimddv 1910 tpid3g 3733 sssnm 3780 pwntru 4228 euotd 4283 ralxfr2d 4495 rexxfr2d 4496 releldmb 4899 relelrnb 4900 elres 4978 iss 4988 imain 5336 elunirn 5809 ovmpt4g 6041 oprssdmm 6224 op1steq 6232 fo2ndf 6280 reldmtpos 6306 rntpos 6310 tfrlemibacc 6379 tfrlemibxssdm 6380 tfrlemibfn 6381 tfrexlem 6387 tfr1onlembacc 6395 tfr1onlembxssdm 6396 tfr1onlembfn 6397 tfrcllembacc 6408 tfrcllembxssdm 6409 tfrcllembfn 6410 map0g 6742 xpdom3m 6888 phplem4 6911 phpm 6921 findcard2 6945 findcard2s 6946 ac6sfi 6954 fiintim 6985 xpfi 6986 fidcenum 7015 ordiso 7095 ctmlemr 7167 ctm 7168 ctssdc 7172 pm54.43 7250 exmidfodomrlemim 7261 recclnq 7452 ltexnqq 7468 ltbtwnnqq 7475 recexprlemss1l 7695 recexprlemss1u 7696 negm 9680 ioom 10329 seq3f1olemp 10586 fiinfnf1o 10857 fihashf1rn 10859 climcau 11490 summodclem2 11525 zsumdc 11527 isumz 11532 fsumf1o 11533 fisumss 11535 fsumcl2lem 11541 fsumadd 11549 fsummulc2 11591 ntrivcvgap 11691 prodmodclem2 11720 zproddc 11722 prod1dc 11729 fprodf1o 11731 fprodssdc 11733 fprodmul 11734 nnmindc 12171 uzwodc 12174 pceu 12433 4sqlemafi 12533 4sqlem12 12540 ennnfone 12582 enctlem 12589 unct 12599 gsumfzval 12974 sgrpidmndm 13001 subrngintm 13708 subrgintm 13739 islssm 13853 lss0cl 13865 islidlm 13975 eltg3 14225 tgtop 14236 tgidm 14242 tgrest 14337 tgcn 14376 xblm 14585 dvfgg 14842 dvcnp2cntop 14848 pwtrufal 15488 |
Copyright terms: Public domain | W3C validator |