| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimdv | GIF version | ||
| Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| exlimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| exlimdv | ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1548 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | ax-17 1548 | . 2 ⊢ (𝜒 → ∀𝑥𝜒) | |
| 3 | exlimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 1, 2, 3 | exlimdh 1618 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1469 ax-gen 1471 ax-ie2 1516 ax-17 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v2 1842 exlimdvv 1920 exlimddv 1921 tpid3g 3747 sssnm 3794 pwntru 4242 euotd 4297 ralxfr2d 4509 rexxfr2d 4510 releldmb 4913 relelrnb 4914 elres 4992 iss 5002 imain 5350 elunirn 5825 ovmpt4g 6058 oprssdmm 6247 op1steq 6255 fo2ndf 6303 reldmtpos 6329 rntpos 6333 tfrlemibacc 6402 tfrlemibxssdm 6403 tfrlemibfn 6404 tfrexlem 6410 tfr1onlembacc 6418 tfr1onlembxssdm 6419 tfr1onlembfn 6420 tfrcllembacc 6431 tfrcllembxssdm 6432 tfrcllembfn 6433 map0g 6765 xpdom3m 6911 phplem4 6934 phpm 6944 findcard2 6968 findcard2s 6969 ac6sfi 6977 fiintim 7010 xpfi 7011 fidcenum 7040 ordiso 7120 ctmlemr 7192 ctm 7193 ctssdc 7197 pm54.43 7280 exmidfodomrlemim 7291 recclnq 7487 ltexnqq 7503 ltbtwnnqq 7510 recexprlemss1l 7730 recexprlemss1u 7731 negm 9718 ioom 10384 seq3f1olemp 10641 fiinfnf1o 10912 fihashf1rn 10914 climcau 11577 summodclem2 11612 zsumdc 11614 isumz 11619 fsumf1o 11620 fisumss 11622 fsumcl2lem 11628 fsumadd 11636 fsummulc2 11678 ntrivcvgap 11778 prodmodclem2 11807 zproddc 11809 prod1dc 11816 fprodf1o 11818 fprodssdc 11820 fprodmul 11821 nnmindc 12274 uzwodc 12277 pceu 12537 4sqlemafi 12637 4sqlem12 12644 ennnfone 12715 enctlem 12722 unct 12732 gsumfzval 13141 sgrpidmndm 13170 subrngintm 13892 subrgintm 13923 islssm 14037 lss0cl 14049 islidlm 14159 eltg3 14447 tgtop 14458 tgidm 14464 tgrest 14559 tgcn 14598 xblm 14807 dvfgg 15078 dvcnp2cntop 15089 2lgslem1 15486 pwtrufal 15798 |
| Copyright terms: Public domain | W3C validator |