| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimdv | GIF version | ||
| Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| exlimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| exlimdv | ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1540 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | ax-17 1540 | . 2 ⊢ (𝜒 → ∀𝑥𝜒) | |
| 3 | exlimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 1, 2, 3 | exlimdh 1610 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v2 1834 exlimdvv 1912 exlimddv 1913 tpid3g 3738 sssnm 3785 pwntru 4233 euotd 4288 ralxfr2d 4500 rexxfr2d 4501 releldmb 4904 relelrnb 4905 elres 4983 iss 4993 imain 5341 elunirn 5814 ovmpt4g 6046 oprssdmm 6230 op1steq 6238 fo2ndf 6286 reldmtpos 6312 rntpos 6316 tfrlemibacc 6385 tfrlemibxssdm 6386 tfrlemibfn 6387 tfrexlem 6393 tfr1onlembacc 6401 tfr1onlembxssdm 6402 tfr1onlembfn 6403 tfrcllembacc 6414 tfrcllembxssdm 6415 tfrcllembfn 6416 map0g 6748 xpdom3m 6894 phplem4 6917 phpm 6927 findcard2 6951 findcard2s 6952 ac6sfi 6960 fiintim 6993 xpfi 6994 fidcenum 7023 ordiso 7103 ctmlemr 7175 ctm 7176 ctssdc 7180 pm54.43 7259 exmidfodomrlemim 7270 recclnq 7461 ltexnqq 7477 ltbtwnnqq 7484 recexprlemss1l 7704 recexprlemss1u 7705 negm 9691 ioom 10352 seq3f1olemp 10609 fiinfnf1o 10880 fihashf1rn 10882 climcau 11514 summodclem2 11549 zsumdc 11551 isumz 11556 fsumf1o 11557 fisumss 11559 fsumcl2lem 11565 fsumadd 11573 fsummulc2 11615 ntrivcvgap 11715 prodmodclem2 11744 zproddc 11746 prod1dc 11753 fprodf1o 11755 fprodssdc 11757 fprodmul 11758 nnmindc 12211 uzwodc 12214 pceu 12474 4sqlemafi 12574 4sqlem12 12581 ennnfone 12652 enctlem 12659 unct 12669 gsumfzval 13044 sgrpidmndm 13071 subrngintm 13778 subrgintm 13809 islssm 13923 lss0cl 13935 islidlm 14045 eltg3 14303 tgtop 14314 tgidm 14320 tgrest 14415 tgcn 14454 xblm 14663 dvfgg 14934 dvcnp2cntop 14945 2lgslem1 15342 pwtrufal 15652 |
| Copyright terms: Public domain | W3C validator |