Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exlimdv | GIF version |
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
exlimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
exlimdv | ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1524 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | ax-17 1524 | . 2 ⊢ (𝜒 → ∀𝑥𝜒) | |
3 | exlimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 1, 2, 3 | exlimdh 1594 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1445 ax-gen 1447 ax-ie2 1492 ax-17 1524 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: ax11v2 1818 exlimdvv 1895 exlimddv 1896 tpid3g 3704 sssnm 3750 pwntru 4194 euotd 4248 ralxfr2d 4458 rexxfr2d 4459 releldmb 4857 relelrnb 4858 elres 4936 iss 4946 imain 5290 elunirn 5757 ovmpt4g 5987 oprssdmm 6162 op1steq 6170 fo2ndf 6218 reldmtpos 6244 rntpos 6248 tfrlemibacc 6317 tfrlemibxssdm 6318 tfrlemibfn 6319 tfrexlem 6325 tfr1onlembacc 6333 tfr1onlembxssdm 6334 tfr1onlembfn 6335 tfrcllembacc 6346 tfrcllembxssdm 6347 tfrcllembfn 6348 map0g 6678 xpdom3m 6824 phplem4 6845 phpm 6855 findcard2 6879 findcard2s 6880 ac6sfi 6888 fiintim 6918 xpfi 6919 fidcenum 6945 ordiso 7025 ctmlemr 7097 ctm 7098 ctssdc 7102 pm54.43 7179 exmidfodomrlemim 7190 recclnq 7366 ltexnqq 7382 ltbtwnnqq 7389 recexprlemss1l 7609 recexprlemss1u 7610 negm 9588 ioom 10231 seq3f1olemp 10472 fiinfnf1o 10734 fihashf1rn 10736 climcau 11323 summodclem2 11358 zsumdc 11360 isumz 11365 fsumf1o 11366 fisumss 11368 fsumcl2lem 11374 fsumadd 11382 fsummulc2 11424 ntrivcvgap 11524 prodmodclem2 11553 zproddc 11555 prod1dc 11562 fprodf1o 11564 fprodssdc 11566 fprodmul 11567 nnmindc 12002 uzwodc 12005 pceu 12262 ennnfone 12393 enctlem 12400 unct 12410 sgrpidmndm 12696 eltg3 13137 tgtop 13148 tgidm 13154 tgrest 13249 tgcn 13288 xblm 13497 dvfgg 13737 dvcnp2cntop 13743 pwtrufal 14316 |
Copyright terms: Public domain | W3C validator |