| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimdv | GIF version | ||
| Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| exlimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| exlimdv | ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1540 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | ax-17 1540 | . 2 ⊢ (𝜒 → ∀𝑥𝜒) | |
| 3 | exlimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 1, 2, 3 | exlimdh 1610 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-17 1540 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v2 1834 exlimdvv 1912 exlimddv 1913 tpid3g 3738 sssnm 3785 pwntru 4233 euotd 4288 ralxfr2d 4500 rexxfr2d 4501 releldmb 4904 relelrnb 4905 elres 4983 iss 4993 imain 5341 elunirn 5816 ovmpt4g 6049 oprssdmm 6238 op1steq 6246 fo2ndf 6294 reldmtpos 6320 rntpos 6324 tfrlemibacc 6393 tfrlemibxssdm 6394 tfrlemibfn 6395 tfrexlem 6401 tfr1onlembacc 6409 tfr1onlembxssdm 6410 tfr1onlembfn 6411 tfrcllembacc 6422 tfrcllembxssdm 6423 tfrcllembfn 6424 map0g 6756 xpdom3m 6902 phplem4 6925 phpm 6935 findcard2 6959 findcard2s 6960 ac6sfi 6968 fiintim 7001 xpfi 7002 fidcenum 7031 ordiso 7111 ctmlemr 7183 ctm 7184 ctssdc 7188 pm54.43 7269 exmidfodomrlemim 7280 recclnq 7476 ltexnqq 7492 ltbtwnnqq 7499 recexprlemss1l 7719 recexprlemss1u 7720 negm 9706 ioom 10367 seq3f1olemp 10624 fiinfnf1o 10895 fihashf1rn 10897 climcau 11529 summodclem2 11564 zsumdc 11566 isumz 11571 fsumf1o 11572 fisumss 11574 fsumcl2lem 11580 fsumadd 11588 fsummulc2 11630 ntrivcvgap 11730 prodmodclem2 11759 zproddc 11761 prod1dc 11768 fprodf1o 11770 fprodssdc 11772 fprodmul 11773 nnmindc 12226 uzwodc 12229 pceu 12489 4sqlemafi 12589 4sqlem12 12596 ennnfone 12667 enctlem 12674 unct 12684 gsumfzval 13093 sgrpidmndm 13122 subrngintm 13844 subrgintm 13875 islssm 13989 lss0cl 14001 islidlm 14111 eltg3 14377 tgtop 14388 tgidm 14394 tgrest 14489 tgcn 14528 xblm 14737 dvfgg 15008 dvcnp2cntop 15019 2lgslem1 15416 pwtrufal 15728 |
| Copyright terms: Public domain | W3C validator |