Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exlimdv | GIF version |
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
Ref | Expression |
---|---|
exlimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
exlimdv | ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1519 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | ax-17 1519 | . 2 ⊢ (𝜒 → ∀𝑥𝜒) | |
3 | exlimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 1, 2, 3 | exlimdh 1589 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-5 1440 ax-gen 1442 ax-ie2 1487 ax-17 1519 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ax11v2 1813 exlimdvv 1890 exlimddv 1891 tpid3g 3698 sssnm 3741 pwntru 4185 euotd 4239 ralxfr2d 4449 rexxfr2d 4450 releldmb 4848 relelrnb 4849 elres 4927 iss 4937 imain 5280 elunirn 5745 ovmpt4g 5975 oprssdmm 6150 op1steq 6158 fo2ndf 6206 reldmtpos 6232 rntpos 6236 tfrlemibacc 6305 tfrlemibxssdm 6306 tfrlemibfn 6307 tfrexlem 6313 tfr1onlembacc 6321 tfr1onlembxssdm 6322 tfr1onlembfn 6323 tfrcllembacc 6334 tfrcllembxssdm 6335 tfrcllembfn 6336 map0g 6666 xpdom3m 6812 phplem4 6833 phpm 6843 findcard2 6867 findcard2s 6868 ac6sfi 6876 fiintim 6906 xpfi 6907 fidcenum 6933 ordiso 7013 ctmlemr 7085 ctm 7086 ctssdc 7090 pm54.43 7167 exmidfodomrlemim 7178 recclnq 7354 ltexnqq 7370 ltbtwnnqq 7377 recexprlemss1l 7597 recexprlemss1u 7598 negm 9574 ioom 10217 seq3f1olemp 10458 fiinfnf1o 10720 fihashf1rn 10723 climcau 11310 summodclem2 11345 zsumdc 11347 isumz 11352 fsumf1o 11353 fisumss 11355 fsumcl2lem 11361 fsumadd 11369 fsummulc2 11411 ntrivcvgap 11511 prodmodclem2 11540 zproddc 11542 prod1dc 11549 fprodf1o 11551 fprodssdc 11553 fprodmul 11554 nnmindc 11989 uzwodc 11992 pceu 12249 ennnfone 12380 enctlem 12387 unct 12397 sgrpidmndm 12656 eltg3 12851 tgtop 12862 tgidm 12868 tgrest 12963 tgcn 13002 xblm 13211 dvfgg 13451 dvcnp2cntop 13457 pwtrufal 14030 |
Copyright terms: Public domain | W3C validator |