| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exlimdv | GIF version | ||
| Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) |
| Ref | Expression |
|---|---|
| exlimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| exlimdv | ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1572 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | ax-17 1572 | . 2 ⊢ (𝜒 → ∀𝑥𝜒) | |
| 3 | exlimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 1, 2, 3 | exlimdh 1642 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1493 ax-gen 1495 ax-ie2 1540 ax-17 1572 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v2 1866 exlimdvv 1944 exlimddv 1945 tpid3g 3781 sssnm 3831 pwntru 4282 euotd 4340 ralxfr2d 4554 rexxfr2d 4555 reldmm 4941 releldmb 4960 relelrnb 4961 elres 5040 iss 5050 imain 5402 elunirn 5889 ovmpt4g 6126 oprssdmm 6315 op1steq 6323 fo2ndf 6371 reldmtpos 6397 rntpos 6401 tfrlemibacc 6470 tfrlemibxssdm 6471 tfrlemibfn 6472 tfrexlem 6478 tfr1onlembacc 6486 tfr1onlembxssdm 6487 tfr1onlembfn 6488 tfrcllembacc 6499 tfrcllembxssdm 6500 tfrcllembfn 6501 map0g 6833 xpdom3m 6989 phplem4 7012 phpm 7023 findcard2 7047 findcard2s 7048 ac6sfi 7056 fiintim 7089 xpfi 7090 fidcenum 7119 ordiso 7199 ctmlemr 7271 ctm 7272 ctssdc 7276 pm54.43 7359 exmidfodomrlemim 7375 iftrueb01 7404 pw1m 7405 recclnq 7575 ltexnqq 7591 ltbtwnnqq 7598 recexprlemss1l 7818 recexprlemss1u 7819 negm 9806 ioom 10475 seq3f1olemp 10732 fiinfnf1o 11003 fihashf1rn 11005 climcau 11853 summodclem2 11888 zsumdc 11890 isumz 11895 fsumf1o 11896 fisumss 11898 fsumcl2lem 11904 fsumadd 11912 fsummulc2 11954 ntrivcvgap 12054 prodmodclem2 12083 zproddc 12085 prod1dc 12092 fprodf1o 12094 fprodssdc 12096 fprodmul 12097 nnmindc 12550 uzwodc 12553 pceu 12813 4sqlemafi 12913 4sqlem12 12920 ennnfone 12991 enctlem 12998 unct 13008 gsumfzval 13419 sgrpidmndm 13448 subrngintm 14170 subrgintm 14201 islssm 14315 lss0cl 14327 islidlm 14437 eltg3 14725 tgtop 14736 tgidm 14742 tgrest 14837 tgcn 14876 xblm 15085 dvfgg 15356 dvcnp2cntop 15367 2lgslem1 15764 dom1o 16314 pwtrufal 16322 |
| Copyright terms: Public domain | W3C validator |