| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > exlimdv | GIF version | ||
| Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.) | 
| Ref | Expression | 
|---|---|
| exlimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) | 
| Ref | Expression | 
|---|---|
| exlimdv | ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-17 1540 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | ax-17 1540 | . 2 ⊢ (𝜒 → ∀𝑥𝜒) | |
| 3 | exlimdv.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 4 | 1, 2, 3 | exlimdh 1610 | 1 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜒)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-5 1461 ax-gen 1463 ax-ie2 1508 ax-17 1540 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: ax11v2 1834 exlimdvv 1912 exlimddv 1913 tpid3g 3737 sssnm 3784 pwntru 4232 euotd 4287 ralxfr2d 4499 rexxfr2d 4500 releldmb 4903 relelrnb 4904 elres 4982 iss 4992 imain 5340 elunirn 5813 ovmpt4g 6045 oprssdmm 6229 op1steq 6237 fo2ndf 6285 reldmtpos 6311 rntpos 6315 tfrlemibacc 6384 tfrlemibxssdm 6385 tfrlemibfn 6386 tfrexlem 6392 tfr1onlembacc 6400 tfr1onlembxssdm 6401 tfr1onlembfn 6402 tfrcllembacc 6413 tfrcllembxssdm 6414 tfrcllembfn 6415 map0g 6747 xpdom3m 6893 phplem4 6916 phpm 6926 findcard2 6950 findcard2s 6951 ac6sfi 6959 fiintim 6992 xpfi 6993 fidcenum 7022 ordiso 7102 ctmlemr 7174 ctm 7175 ctssdc 7179 pm54.43 7257 exmidfodomrlemim 7268 recclnq 7459 ltexnqq 7475 ltbtwnnqq 7482 recexprlemss1l 7702 recexprlemss1u 7703 negm 9689 ioom 10350 seq3f1olemp 10607 fiinfnf1o 10878 fihashf1rn 10880 climcau 11512 summodclem2 11547 zsumdc 11549 isumz 11554 fsumf1o 11555 fisumss 11557 fsumcl2lem 11563 fsumadd 11571 fsummulc2 11613 ntrivcvgap 11713 prodmodclem2 11742 zproddc 11744 prod1dc 11751 fprodf1o 11753 fprodssdc 11755 fprodmul 11756 nnmindc 12201 uzwodc 12204 pceu 12464 4sqlemafi 12564 4sqlem12 12571 ennnfone 12642 enctlem 12649 unct 12659 gsumfzval 13034 sgrpidmndm 13061 subrngintm 13768 subrgintm 13799 islssm 13913 lss0cl 13925 islidlm 14035 eltg3 14293 tgtop 14304 tgidm 14310 tgrest 14405 tgcn 14444 xblm 14653 dvfgg 14924 dvcnp2cntop 14935 2lgslem1 15332 pwtrufal 15642 | 
| Copyright terms: Public domain | W3C validator |