| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dtru | GIF version | ||
| Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). If we assumed the law of the excluded middle this would be equivalent to dtruex 4651. (Contributed by Jim Kingdon, 29-Dec-2018.) |
| Ref | Expression |
|---|---|
| dtru | ⊢ ¬ ∀𝑥 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dtruex 4651 | . 2 ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 | |
| 2 | exnalim 1692 | . 2 ⊢ (∃𝑥 ¬ 𝑥 = 𝑦 → ¬ ∀𝑥 𝑥 = 𝑦) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ¬ ∀𝑥 𝑥 = 𝑦 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∀wal 1393 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 |
| This theorem is referenced by: oprabidlem 6038 |
| Copyright terms: Public domain | W3C validator |