ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dtru GIF version

Theorem dtru 4544
Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). If we assumed the law of the excluded middle this would be equivalent to dtruex 4543. (Contributed by Jim Kingdon, 29-Dec-2018.)
Assertion
Ref Expression
dtru ¬ ∀𝑥 𝑥 = 𝑦
Distinct variable group:   𝑥,𝑦

Proof of Theorem dtru
StepHypRef Expression
1 dtruex 4543 . 2 𝑥 ¬ 𝑥 = 𝑦
2 exnalim 1639 . 2 (∃𝑥 ¬ 𝑥 = 𝑦 → ¬ ∀𝑥 𝑥 = 𝑦)
31, 2ax-mp 5 1 ¬ ∀𝑥 𝑥 = 𝑦
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wal 1346  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589
This theorem is referenced by:  oprabidlem  5884
  Copyright terms: Public domain W3C validator