| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dtru | GIF version | ||
| Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). If we assumed the law of the excluded middle this would be equivalent to dtruex 4596. (Contributed by Jim Kingdon, 29-Dec-2018.) |
| Ref | Expression |
|---|---|
| dtru | ⊢ ¬ ∀𝑥 𝑥 = 𝑦 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dtruex 4596 | . 2 ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 | |
| 2 | exnalim 1660 | . 2 ⊢ (∃𝑥 ¬ 𝑥 = 𝑦 → ¬ ∀𝑥 𝑥 = 𝑦) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ¬ ∀𝑥 𝑥 = 𝑦 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∀wal 1362 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 |
| This theorem is referenced by: oprabidlem 5956 |
| Copyright terms: Public domain | W3C validator |