ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1dm GIF version

Theorem f1dm 5398
Description: The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
f1dm (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)

Proof of Theorem f1dm
StepHypRef Expression
1 f1fn 5395 . 2 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
2 fndm 5287 . 2 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
31, 2syl 14 1 (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  dom cdm 4604   Fn wfn 5183  1-1wf1 5185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116  df-fn 5191  df-f 5192  df-f1 5193
This theorem is referenced by:  fun11iun  5453  tposf12  6237  f1dmvrnfibi  6909  f1vrnfibi  6910  exmidfodomrlemim  7157  hmeoimaf1o  12954  exmidsbthrlem  13901
  Copyright terms: Public domain W3C validator