![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1dm | GIF version |
Description: The domain of a one-to-one mapping. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
f1dm | ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1fn 5425 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) | |
2 | fndm 5317 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 dom cdm 4628 Fn wfn 5213 –1-1→wf1 5215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-fn 5221 df-f 5222 df-f1 5223 |
This theorem is referenced by: fun11iun 5484 tposf12 6272 f1dmvrnfibi 6945 f1vrnfibi 6946 exmidfodomrlemim 7202 hmeoimaf1o 13899 exmidsbthrlem 14855 |
Copyright terms: Public domain | W3C validator |