ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1vrnfibi GIF version

Theorem f1vrnfibi 6946
Description: A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi 6945. (Contributed by AV, 10-Jan-2020.)
Assertion
Ref Expression
f1vrnfibi ((𝐹𝑉𝐹:𝐴1-1𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))

Proof of Theorem f1vrnfibi
StepHypRef Expression
1 f1dm 5428 . . . 4 (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)
2 dmexg 4893 . . . . 5 (𝐹𝑉 → dom 𝐹 ∈ V)
3 eleq1 2240 . . . . . 6 (𝐴 = dom 𝐹 → (𝐴 ∈ V ↔ dom 𝐹 ∈ V))
43eqcoms 2180 . . . . 5 (dom 𝐹 = 𝐴 → (𝐴 ∈ V ↔ dom 𝐹 ∈ V))
52, 4imbitrrid 156 . . . 4 (dom 𝐹 = 𝐴 → (𝐹𝑉𝐴 ∈ V))
61, 5syl 14 . . 3 (𝐹:𝐴1-1𝐵 → (𝐹𝑉𝐴 ∈ V))
76impcom 125 . 2 ((𝐹𝑉𝐹:𝐴1-1𝐵) → 𝐴 ∈ V)
8 f1dmvrnfibi 6945 . 2 ((𝐴 ∈ V ∧ 𝐹:𝐴1-1𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))
97, 8sylancom 420 1 ((𝐹𝑉𝐹:𝐴1-1𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  Vcvv 2739  dom cdm 4628  ran crn 4629  1-1wf1 5215  Fincfn 6742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1st 6143  df-2nd 6144  df-1o 6419  df-er 6537  df-en 6743  df-fin 6745
This theorem is referenced by:  negfi  11238
  Copyright terms: Public domain W3C validator