ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1vrnfibi GIF version

Theorem f1vrnfibi 6922
Description: A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi 6921. (Contributed by AV, 10-Jan-2020.)
Assertion
Ref Expression
f1vrnfibi ((𝐹𝑉𝐹:𝐴1-1𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))

Proof of Theorem f1vrnfibi
StepHypRef Expression
1 f1dm 5408 . . . 4 (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)
2 dmexg 4875 . . . . 5 (𝐹𝑉 → dom 𝐹 ∈ V)
3 eleq1 2233 . . . . . 6 (𝐴 = dom 𝐹 → (𝐴 ∈ V ↔ dom 𝐹 ∈ V))
43eqcoms 2173 . . . . 5 (dom 𝐹 = 𝐴 → (𝐴 ∈ V ↔ dom 𝐹 ∈ V))
52, 4syl5ibr 155 . . . 4 (dom 𝐹 = 𝐴 → (𝐹𝑉𝐴 ∈ V))
61, 5syl 14 . . 3 (𝐹:𝐴1-1𝐵 → (𝐹𝑉𝐴 ∈ V))
76impcom 124 . 2 ((𝐹𝑉𝐹:𝐴1-1𝐵) → 𝐴 ∈ V)
8 f1dmvrnfibi 6921 . 2 ((𝐴 ∈ V ∧ 𝐹:𝐴1-1𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))
97, 8sylancom 418 1 ((𝐹𝑉𝐹:𝐴1-1𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wcel 2141  Vcvv 2730  dom cdm 4611  ran crn 4612  1-1wf1 5195  Fincfn 6718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-er 6513  df-en 6719  df-fin 6721
This theorem is referenced by:  negfi  11191
  Copyright terms: Public domain W3C validator