Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1vrnfibi | GIF version |
Description: A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi 6909. (Contributed by AV, 10-Jan-2020.) |
Ref | Expression |
---|---|
f1vrnfibi | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1dm 5398 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) | |
2 | dmexg 4868 | . . . . 5 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
3 | eleq1 2229 | . . . . . 6 ⊢ (𝐴 = dom 𝐹 → (𝐴 ∈ V ↔ dom 𝐹 ∈ V)) | |
4 | 3 | eqcoms 2168 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → (𝐴 ∈ V ↔ dom 𝐹 ∈ V)) |
5 | 2, 4 | syl5ibr 155 | . . . 4 ⊢ (dom 𝐹 = 𝐴 → (𝐹 ∈ 𝑉 → 𝐴 ∈ V)) |
6 | 1, 5 | syl 14 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐹 ∈ 𝑉 → 𝐴 ∈ V)) |
7 | 6 | impcom 124 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ∈ V) |
8 | f1dmvrnfibi 6909 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) | |
9 | 7, 8 | sylancom 417 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 Vcvv 2726 dom cdm 4604 ran crn 4605 –1-1→wf1 5185 Fincfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-er 6501 df-en 6707 df-fin 6709 |
This theorem is referenced by: negfi 11169 |
Copyright terms: Public domain | W3C validator |