ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeoimaf1o GIF version

Theorem hmeoimaf1o 14988
Description: The function mapping open sets to their images under a homeomorphism is a bijection of topologies. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
hmeoimaf1o.1 𝐺 = (𝑥𝐽 ↦ (𝐹𝑥))
Assertion
Ref Expression
hmeoimaf1o (𝐹 ∈ (𝐽Homeo𝐾) → 𝐺:𝐽1-1-onto𝐾)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem hmeoimaf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 hmeoimaf1o.1 . 2 𝐺 = (𝑥𝐽 ↦ (𝐹𝑥))
2 hmeoima 14984 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑥𝐽) → (𝐹𝑥) ∈ 𝐾)
3 hmeocn 14979 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
4 cnima 14894 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑦𝐾) → (𝐹𝑦) ∈ 𝐽)
53, 4sylan 283 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑦𝐾) → (𝐹𝑦) ∈ 𝐽)
6 eqid 2229 . . . . . . 7 𝐽 = 𝐽
7 eqid 2229 . . . . . . 7 𝐾 = 𝐾
86, 7hmeof1o 14983 . . . . . 6 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹: 𝐽1-1-onto 𝐾)
98adantr 276 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → 𝐹: 𝐽1-1-onto 𝐾)
10 f1of1 5571 . . . . 5 (𝐹: 𝐽1-1-onto 𝐾𝐹: 𝐽1-1 𝐾)
119, 10syl 14 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → 𝐹: 𝐽1-1 𝐾)
12 elssuni 3916 . . . . 5 (𝑥𝐽𝑥 𝐽)
1312ad2antrl 490 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → 𝑥 𝐽)
14 cnvimass 5091 . . . . 5 (𝐹𝑦) ⊆ dom 𝐹
15 f1dm 5536 . . . . . 6 (𝐹: 𝐽1-1 𝐾 → dom 𝐹 = 𝐽)
1611, 15syl 14 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → dom 𝐹 = 𝐽)
1714, 16sseqtrid 3274 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → (𝐹𝑦) ⊆ 𝐽)
18 f1imaeq 5899 . . . 4 ((𝐹: 𝐽1-1 𝐾 ∧ (𝑥 𝐽 ∧ (𝐹𝑦) ⊆ 𝐽)) → ((𝐹𝑥) = (𝐹 “ (𝐹𝑦)) ↔ 𝑥 = (𝐹𝑦)))
1911, 13, 17, 18syl12anc 1269 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → ((𝐹𝑥) = (𝐹 “ (𝐹𝑦)) ↔ 𝑥 = (𝐹𝑦)))
20 f1ofo 5579 . . . . . . 7 (𝐹: 𝐽1-1-onto 𝐾𝐹: 𝐽onto 𝐾)
219, 20syl 14 . . . . . 6 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → 𝐹: 𝐽onto 𝐾)
22 elssuni 3916 . . . . . . 7 (𝑦𝐾𝑦 𝐾)
2322ad2antll 491 . . . . . 6 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → 𝑦 𝐾)
24 foimacnv 5590 . . . . . 6 ((𝐹: 𝐽onto 𝐾𝑦 𝐾) → (𝐹 “ (𝐹𝑦)) = 𝑦)
2521, 23, 24syl2anc 411 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → (𝐹 “ (𝐹𝑦)) = 𝑦)
2625eqeq2d 2241 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → ((𝐹𝑥) = (𝐹 “ (𝐹𝑦)) ↔ (𝐹𝑥) = 𝑦))
27 eqcom 2231 . . . 4 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
2826, 27bitrdi 196 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → ((𝐹𝑥) = (𝐹 “ (𝐹𝑦)) ↔ 𝑦 = (𝐹𝑥)))
2919, 28bitr3d 190 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → (𝑥 = (𝐹𝑦) ↔ 𝑦 = (𝐹𝑥)))
301, 2, 5, 29f1o2d 6211 1 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐺:𝐽1-1-onto𝐾)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wss 3197   cuni 3888  cmpt 4145  ccnv 4718  dom cdm 4719  cima 4722  1-1wf1 5315  ontowfo 5316  1-1-ontowf1o 5317  (class class class)co 6001   Cn ccn 14859  Homeochmeo 14974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-top 14672  df-topon 14685  df-cn 14862  df-hmeo 14975
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator