ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeoimaf1o GIF version

Theorem hmeoimaf1o 12483
Description: The function mapping open sets to their images under a homeomorphism is a bijection of topologies. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
hmeoimaf1o.1 𝐺 = (𝑥𝐽 ↦ (𝐹𝑥))
Assertion
Ref Expression
hmeoimaf1o (𝐹 ∈ (𝐽Homeo𝐾) → 𝐺:𝐽1-1-onto𝐾)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem hmeoimaf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 hmeoimaf1o.1 . 2 𝐺 = (𝑥𝐽 ↦ (𝐹𝑥))
2 hmeoima 12479 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑥𝐽) → (𝐹𝑥) ∈ 𝐾)
3 hmeocn 12474 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
4 cnima 12389 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑦𝐾) → (𝐹𝑦) ∈ 𝐽)
53, 4sylan 281 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑦𝐾) → (𝐹𝑦) ∈ 𝐽)
6 eqid 2139 . . . . . . 7 𝐽 = 𝐽
7 eqid 2139 . . . . . . 7 𝐾 = 𝐾
86, 7hmeof1o 12478 . . . . . 6 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹: 𝐽1-1-onto 𝐾)
98adantr 274 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → 𝐹: 𝐽1-1-onto 𝐾)
10 f1of1 5366 . . . . 5 (𝐹: 𝐽1-1-onto 𝐾𝐹: 𝐽1-1 𝐾)
119, 10syl 14 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → 𝐹: 𝐽1-1 𝐾)
12 elssuni 3764 . . . . 5 (𝑥𝐽𝑥 𝐽)
1312ad2antrl 481 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → 𝑥 𝐽)
14 cnvimass 4902 . . . . 5 (𝐹𝑦) ⊆ dom 𝐹
15 f1dm 5333 . . . . . 6 (𝐹: 𝐽1-1 𝐾 → dom 𝐹 = 𝐽)
1611, 15syl 14 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → dom 𝐹 = 𝐽)
1714, 16sseqtrid 3147 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → (𝐹𝑦) ⊆ 𝐽)
18 f1imaeq 5676 . . . 4 ((𝐹: 𝐽1-1 𝐾 ∧ (𝑥 𝐽 ∧ (𝐹𝑦) ⊆ 𝐽)) → ((𝐹𝑥) = (𝐹 “ (𝐹𝑦)) ↔ 𝑥 = (𝐹𝑦)))
1911, 13, 17, 18syl12anc 1214 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → ((𝐹𝑥) = (𝐹 “ (𝐹𝑦)) ↔ 𝑥 = (𝐹𝑦)))
20 f1ofo 5374 . . . . . . 7 (𝐹: 𝐽1-1-onto 𝐾𝐹: 𝐽onto 𝐾)
219, 20syl 14 . . . . . 6 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → 𝐹: 𝐽onto 𝐾)
22 elssuni 3764 . . . . . . 7 (𝑦𝐾𝑦 𝐾)
2322ad2antll 482 . . . . . 6 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → 𝑦 𝐾)
24 foimacnv 5385 . . . . . 6 ((𝐹: 𝐽onto 𝐾𝑦 𝐾) → (𝐹 “ (𝐹𝑦)) = 𝑦)
2521, 23, 24syl2anc 408 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → (𝐹 “ (𝐹𝑦)) = 𝑦)
2625eqeq2d 2151 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → ((𝐹𝑥) = (𝐹 “ (𝐹𝑦)) ↔ (𝐹𝑥) = 𝑦))
27 eqcom 2141 . . . 4 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
2826, 27syl6bb 195 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → ((𝐹𝑥) = (𝐹 “ (𝐹𝑦)) ↔ 𝑦 = (𝐹𝑥)))
2919, 28bitr3d 189 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → (𝑥 = (𝐹𝑦) ↔ 𝑦 = (𝐹𝑥)))
301, 2, 5, 29f1o2d 5975 1 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐺:𝐽1-1-onto𝐾)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wss 3071   cuni 3736  cmpt 3989  ccnv 4538  dom cdm 4539  cima 4542  1-1wf1 5120  ontowfo 5121  1-1-ontowf1o 5122  (class class class)co 5774   Cn ccn 12354  Homeochmeo 12469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-top 12165  df-topon 12178  df-cn 12357  df-hmeo 12470
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator