ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hmeoimaf1o GIF version

Theorem hmeoimaf1o 14901
Description: The function mapping open sets to their images under a homeomorphism is a bijection of topologies. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
hmeoimaf1o.1 𝐺 = (𝑥𝐽 ↦ (𝐹𝑥))
Assertion
Ref Expression
hmeoimaf1o (𝐹 ∈ (𝐽Homeo𝐾) → 𝐺:𝐽1-1-onto𝐾)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐾
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem hmeoimaf1o
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 hmeoimaf1o.1 . 2 𝐺 = (𝑥𝐽 ↦ (𝐹𝑥))
2 hmeoima 14897 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑥𝐽) → (𝐹𝑥) ∈ 𝐾)
3 hmeocn 14892 . . 3 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
4 cnima 14807 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑦𝐾) → (𝐹𝑦) ∈ 𝐽)
53, 4sylan 283 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ 𝑦𝐾) → (𝐹𝑦) ∈ 𝐽)
6 eqid 2207 . . . . . . 7 𝐽 = 𝐽
7 eqid 2207 . . . . . . 7 𝐾 = 𝐾
86, 7hmeof1o 14896 . . . . . 6 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹: 𝐽1-1-onto 𝐾)
98adantr 276 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → 𝐹: 𝐽1-1-onto 𝐾)
10 f1of1 5543 . . . . 5 (𝐹: 𝐽1-1-onto 𝐾𝐹: 𝐽1-1 𝐾)
119, 10syl 14 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → 𝐹: 𝐽1-1 𝐾)
12 elssuni 3892 . . . . 5 (𝑥𝐽𝑥 𝐽)
1312ad2antrl 490 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → 𝑥 𝐽)
14 cnvimass 5064 . . . . 5 (𝐹𝑦) ⊆ dom 𝐹
15 f1dm 5508 . . . . . 6 (𝐹: 𝐽1-1 𝐾 → dom 𝐹 = 𝐽)
1611, 15syl 14 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → dom 𝐹 = 𝐽)
1714, 16sseqtrid 3251 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → (𝐹𝑦) ⊆ 𝐽)
18 f1imaeq 5867 . . . 4 ((𝐹: 𝐽1-1 𝐾 ∧ (𝑥 𝐽 ∧ (𝐹𝑦) ⊆ 𝐽)) → ((𝐹𝑥) = (𝐹 “ (𝐹𝑦)) ↔ 𝑥 = (𝐹𝑦)))
1911, 13, 17, 18syl12anc 1248 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → ((𝐹𝑥) = (𝐹 “ (𝐹𝑦)) ↔ 𝑥 = (𝐹𝑦)))
20 f1ofo 5551 . . . . . . 7 (𝐹: 𝐽1-1-onto 𝐾𝐹: 𝐽onto 𝐾)
219, 20syl 14 . . . . . 6 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → 𝐹: 𝐽onto 𝐾)
22 elssuni 3892 . . . . . . 7 (𝑦𝐾𝑦 𝐾)
2322ad2antll 491 . . . . . 6 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → 𝑦 𝐾)
24 foimacnv 5562 . . . . . 6 ((𝐹: 𝐽onto 𝐾𝑦 𝐾) → (𝐹 “ (𝐹𝑦)) = 𝑦)
2521, 23, 24syl2anc 411 . . . . 5 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → (𝐹 “ (𝐹𝑦)) = 𝑦)
2625eqeq2d 2219 . . . 4 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → ((𝐹𝑥) = (𝐹 “ (𝐹𝑦)) ↔ (𝐹𝑥) = 𝑦))
27 eqcom 2209 . . . 4 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
2826, 27bitrdi 196 . . 3 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → ((𝐹𝑥) = (𝐹 “ (𝐹𝑦)) ↔ 𝑦 = (𝐹𝑥)))
2919, 28bitr3d 190 . 2 ((𝐹 ∈ (𝐽Homeo𝐾) ∧ (𝑥𝐽𝑦𝐾)) → (𝑥 = (𝐹𝑦) ↔ 𝑦 = (𝐹𝑥)))
301, 2, 5, 29f1o2d 6174 1 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐺:𝐽1-1-onto𝐾)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  wss 3174   cuni 3864  cmpt 4121  ccnv 4692  dom cdm 4693  cima 4696  1-1wf1 5287  ontowfo 5288  1-1-ontowf1o 5289  (class class class)co 5967   Cn ccn 14772  Homeochmeo 14887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-top 14585  df-topon 14598  df-cn 14775  df-hmeo 14888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator