ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposf12 GIF version

Theorem tposf12 5966
Description: Condition for an injective transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf12 (Rel 𝐴 → (𝐹:𝐴1-1𝐵 → tpos 𝐹:𝐴1-1𝐵))

Proof of Theorem tposf12
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 108 . . . 4 ((Rel 𝐴𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1𝐵)
2 relcnv 4765 . . . . . . 7 Rel 𝐴
3 cnvf1o 5925 . . . . . . 7 (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
4 f1of1 5200 . . . . . . 7 ((𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1𝐴)
52, 3, 4mp2b 8 . . . . . 6 (𝑥𝐴 {𝑥}):𝐴1-1𝐴
6 simpl 107 . . . . . . . 8 ((Rel 𝐴𝐹:𝐴1-1𝐵) → Rel 𝐴)
7 dfrel2 4835 . . . . . . . 8 (Rel 𝐴𝐴 = 𝐴)
86, 7sylib 120 . . . . . . 7 ((Rel 𝐴𝐹:𝐴1-1𝐵) → 𝐴 = 𝐴)
9 f1eq3 5161 . . . . . . 7 (𝐴 = 𝐴 → ((𝑥𝐴 {𝑥}):𝐴1-1𝐴 ↔ (𝑥𝐴 {𝑥}):𝐴1-1𝐴))
108, 9syl 14 . . . . . 6 ((Rel 𝐴𝐹:𝐴1-1𝐵) → ((𝑥𝐴 {𝑥}):𝐴1-1𝐴 ↔ (𝑥𝐴 {𝑥}):𝐴1-1𝐴))
115, 10mpbii 146 . . . . 5 ((Rel 𝐴𝐹:𝐴1-1𝐵) → (𝑥𝐴 {𝑥}):𝐴1-1𝐴)
12 f1dm 5169 . . . . . . . 8 (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)
131, 12syl 14 . . . . . . 7 ((Rel 𝐴𝐹:𝐴1-1𝐵) → dom 𝐹 = 𝐴)
1413cnveqd 4570 . . . . . 6 ((Rel 𝐴𝐹:𝐴1-1𝐵) → dom 𝐹 = 𝐴)
15 mpteq1 3888 . . . . . 6 (dom 𝐹 = 𝐴 → (𝑥dom 𝐹 {𝑥}) = (𝑥𝐴 {𝑥}))
16 f1eq1 5159 . . . . . 6 ((𝑥dom 𝐹 {𝑥}) = (𝑥𝐴 {𝑥}) → ((𝑥dom 𝐹 {𝑥}):𝐴1-1𝐴 ↔ (𝑥𝐴 {𝑥}):𝐴1-1𝐴))
1714, 15, 163syl 17 . . . . 5 ((Rel 𝐴𝐹:𝐴1-1𝐵) → ((𝑥dom 𝐹 {𝑥}):𝐴1-1𝐴 ↔ (𝑥𝐴 {𝑥}):𝐴1-1𝐴))
1811, 17mpbird 165 . . . 4 ((Rel 𝐴𝐹:𝐴1-1𝐵) → (𝑥dom 𝐹 {𝑥}):𝐴1-1𝐴)
19 f1co 5176 . . . 4 ((𝐹:𝐴1-1𝐵 ∧ (𝑥dom 𝐹 {𝑥}):𝐴1-1𝐴) → (𝐹 ∘ (𝑥dom 𝐹 {𝑥})):𝐴1-1𝐵)
201, 18, 19syl2anc 403 . . 3 ((Rel 𝐴𝐹:𝐴1-1𝐵) → (𝐹 ∘ (𝑥dom 𝐹 {𝑥})):𝐴1-1𝐵)
2112releqd 4480 . . . . 5 (𝐹:𝐴1-1𝐵 → (Rel dom 𝐹 ↔ Rel 𝐴))
2221biimparc 293 . . . 4 ((Rel 𝐴𝐹:𝐴1-1𝐵) → Rel dom 𝐹)
23 dftpos2 5958 . . . 4 (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥dom 𝐹 {𝑥})))
24 f1eq1 5159 . . . 4 (tpos 𝐹 = (𝐹 ∘ (𝑥dom 𝐹 {𝑥})) → (tpos 𝐹:𝐴1-1𝐵 ↔ (𝐹 ∘ (𝑥dom 𝐹 {𝑥})):𝐴1-1𝐵))
2522, 23, 243syl 17 . . 3 ((Rel 𝐴𝐹:𝐴1-1𝐵) → (tpos 𝐹:𝐴1-1𝐵 ↔ (𝐹 ∘ (𝑥dom 𝐹 {𝑥})):𝐴1-1𝐵))
2620, 25mpbird 165 . 2 ((Rel 𝐴𝐹:𝐴1-1𝐵) → tpos 𝐹:𝐴1-1𝐵)
2726ex 113 1 (Rel 𝐴 → (𝐹:𝐴1-1𝐵 → tpos 𝐹:𝐴1-1𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  {csn 3422   cuni 3627  cmpt 3865  ccnv 4400  dom cdm 4401  ccom 4405  Rel wrel 4406  1-1wf1 4966  1-1-ontowf1o 4968  tpos ctpos 5941
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-mpt 3867  df-id 4084  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-1st 5846  df-2nd 5847  df-tpos 5942
This theorem is referenced by:  tposf1o2  5967
  Copyright terms: Public domain W3C validator