ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposf12 GIF version

Theorem tposf12 6272
Description: Condition for an injective transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf12 (Rel 𝐴 → (𝐹:𝐴1-1𝐵 → tpos 𝐹:𝐴1-1𝐵))

Proof of Theorem tposf12
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . 4 ((Rel 𝐴𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1𝐵)
2 relcnv 5008 . . . . . . 7 Rel 𝐴
3 cnvf1o 6228 . . . . . . 7 (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
4 f1of1 5462 . . . . . . 7 ((𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1𝐴)
52, 3, 4mp2b 8 . . . . . 6 (𝑥𝐴 {𝑥}):𝐴1-1𝐴
6 simpl 109 . . . . . . . 8 ((Rel 𝐴𝐹:𝐴1-1𝐵) → Rel 𝐴)
7 dfrel2 5081 . . . . . . . 8 (Rel 𝐴𝐴 = 𝐴)
86, 7sylib 122 . . . . . . 7 ((Rel 𝐴𝐹:𝐴1-1𝐵) → 𝐴 = 𝐴)
9 f1eq3 5420 . . . . . . 7 (𝐴 = 𝐴 → ((𝑥𝐴 {𝑥}):𝐴1-1𝐴 ↔ (𝑥𝐴 {𝑥}):𝐴1-1𝐴))
108, 9syl 14 . . . . . 6 ((Rel 𝐴𝐹:𝐴1-1𝐵) → ((𝑥𝐴 {𝑥}):𝐴1-1𝐴 ↔ (𝑥𝐴 {𝑥}):𝐴1-1𝐴))
115, 10mpbii 148 . . . . 5 ((Rel 𝐴𝐹:𝐴1-1𝐵) → (𝑥𝐴 {𝑥}):𝐴1-1𝐴)
12 f1dm 5428 . . . . . . . 8 (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)
131, 12syl 14 . . . . . . 7 ((Rel 𝐴𝐹:𝐴1-1𝐵) → dom 𝐹 = 𝐴)
1413cnveqd 4805 . . . . . 6 ((Rel 𝐴𝐹:𝐴1-1𝐵) → dom 𝐹 = 𝐴)
15 mpteq1 4089 . . . . . 6 (dom 𝐹 = 𝐴 → (𝑥dom 𝐹 {𝑥}) = (𝑥𝐴 {𝑥}))
16 f1eq1 5418 . . . . . 6 ((𝑥dom 𝐹 {𝑥}) = (𝑥𝐴 {𝑥}) → ((𝑥dom 𝐹 {𝑥}):𝐴1-1𝐴 ↔ (𝑥𝐴 {𝑥}):𝐴1-1𝐴))
1714, 15, 163syl 17 . . . . 5 ((Rel 𝐴𝐹:𝐴1-1𝐵) → ((𝑥dom 𝐹 {𝑥}):𝐴1-1𝐴 ↔ (𝑥𝐴 {𝑥}):𝐴1-1𝐴))
1811, 17mpbird 167 . . . 4 ((Rel 𝐴𝐹:𝐴1-1𝐵) → (𝑥dom 𝐹 {𝑥}):𝐴1-1𝐴)
19 f1co 5435 . . . 4 ((𝐹:𝐴1-1𝐵 ∧ (𝑥dom 𝐹 {𝑥}):𝐴1-1𝐴) → (𝐹 ∘ (𝑥dom 𝐹 {𝑥})):𝐴1-1𝐵)
201, 18, 19syl2anc 411 . . 3 ((Rel 𝐴𝐹:𝐴1-1𝐵) → (𝐹 ∘ (𝑥dom 𝐹 {𝑥})):𝐴1-1𝐵)
2112releqd 4712 . . . . 5 (𝐹:𝐴1-1𝐵 → (Rel dom 𝐹 ↔ Rel 𝐴))
2221biimparc 299 . . . 4 ((Rel 𝐴𝐹:𝐴1-1𝐵) → Rel dom 𝐹)
23 dftpos2 6264 . . . 4 (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥dom 𝐹 {𝑥})))
24 f1eq1 5418 . . . 4 (tpos 𝐹 = (𝐹 ∘ (𝑥dom 𝐹 {𝑥})) → (tpos 𝐹:𝐴1-1𝐵 ↔ (𝐹 ∘ (𝑥dom 𝐹 {𝑥})):𝐴1-1𝐵))
2522, 23, 243syl 17 . . 3 ((Rel 𝐴𝐹:𝐴1-1𝐵) → (tpos 𝐹:𝐴1-1𝐵 ↔ (𝐹 ∘ (𝑥dom 𝐹 {𝑥})):𝐴1-1𝐵))
2620, 25mpbird 167 . 2 ((Rel 𝐴𝐹:𝐴1-1𝐵) → tpos 𝐹:𝐴1-1𝐵)
2726ex 115 1 (Rel 𝐴 → (𝐹:𝐴1-1𝐵 → tpos 𝐹:𝐴1-1𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  {csn 3594   cuni 3811  cmpt 4066  ccnv 4627  dom cdm 4628  ccom 4632  Rel wrel 4633  1-1wf1 5215  1-1-ontowf1o 5217  tpos ctpos 6247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1st 6143  df-2nd 6144  df-tpos 6248
This theorem is referenced by:  tposf1o2  6273
  Copyright terms: Public domain W3C validator