Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > gencbvex2 | GIF version |
Description: Restatement of gencbvex 2776 with weaker hypotheses. (Contributed by Jeff Hankins, 6-Dec-2006.) |
Ref | Expression |
---|---|
gencbvex2.1 | ⊢ 𝐴 ∈ V |
gencbvex2.2 | ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) |
gencbvex2.3 | ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) |
gencbvex2.4 | ⊢ (𝜃 → ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) |
Ref | Expression |
---|---|
gencbvex2 | ⊢ (∃𝑥(𝜒 ∧ 𝜑) ↔ ∃𝑦(𝜃 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gencbvex2.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | gencbvex2.2 | . 2 ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | gencbvex2.3 | . 2 ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) | |
4 | gencbvex2.4 | . . 3 ⊢ (𝜃 → ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) | |
5 | 3 | biimpac 296 | . . . 4 ⊢ ((𝜒 ∧ 𝐴 = 𝑦) → 𝜃) |
6 | 5 | exlimiv 1591 | . . 3 ⊢ (∃𝑥(𝜒 ∧ 𝐴 = 𝑦) → 𝜃) |
7 | 4, 6 | impbii 125 | . 2 ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) |
8 | 1, 2, 3, 7 | gencbvex 2776 | 1 ⊢ (∃𝑥(𝜒 ∧ 𝜑) ↔ ∃𝑦(𝜃 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∃wex 1485 ∈ wcel 2141 Vcvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |