| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gencbvex2 | GIF version | ||
| Description: Restatement of gencbvex 2810 with weaker hypotheses. (Contributed by Jeff Hankins, 6-Dec-2006.) |
| Ref | Expression |
|---|---|
| gencbvex2.1 | ⊢ 𝐴 ∈ V |
| gencbvex2.2 | ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) |
| gencbvex2.3 | ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) |
| gencbvex2.4 | ⊢ (𝜃 → ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) |
| Ref | Expression |
|---|---|
| gencbvex2 | ⊢ (∃𝑥(𝜒 ∧ 𝜑) ↔ ∃𝑦(𝜃 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gencbvex2.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | gencbvex2.2 | . 2 ⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | gencbvex2.3 | . 2 ⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) | |
| 4 | gencbvex2.4 | . . 3 ⊢ (𝜃 → ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) | |
| 5 | 3 | biimpac 298 | . . . 4 ⊢ ((𝜒 ∧ 𝐴 = 𝑦) → 𝜃) |
| 6 | 5 | exlimiv 1612 | . . 3 ⊢ (∃𝑥(𝜒 ∧ 𝐴 = 𝑦) → 𝜃) |
| 7 | 4, 6 | impbii 126 | . 2 ⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) |
| 8 | 1, 2, 3, 7 | gencbvex 2810 | 1 ⊢ (∃𝑥(𝜒 ∧ 𝜑) ↔ ∃𝑦(𝜃 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |