Proof of Theorem gencbvex
| Step | Hyp | Ref
| Expression |
| 1 | | excom 1678 |
. 2
⊢
(∃𝑥∃𝑦(𝑦 = 𝐴 ∧ (𝜃 ∧ 𝜓)) ↔ ∃𝑦∃𝑥(𝑦 = 𝐴 ∧ (𝜃 ∧ 𝜓))) |
| 2 | | gencbvex.1 |
. . . 4
⊢ 𝐴 ∈ V |
| 3 | | gencbvex.3 |
. . . . . . 7
⊢ (𝐴 = 𝑦 → (𝜒 ↔ 𝜃)) |
| 4 | | gencbvex.2 |
. . . . . . 7
⊢ (𝐴 = 𝑦 → (𝜑 ↔ 𝜓)) |
| 5 | 3, 4 | anbi12d 473 |
. . . . . 6
⊢ (𝐴 = 𝑦 → ((𝜒 ∧ 𝜑) ↔ (𝜃 ∧ 𝜓))) |
| 6 | 5 | bicomd 141 |
. . . . 5
⊢ (𝐴 = 𝑦 → ((𝜃 ∧ 𝜓) ↔ (𝜒 ∧ 𝜑))) |
| 7 | 6 | eqcoms 2199 |
. . . 4
⊢ (𝑦 = 𝐴 → ((𝜃 ∧ 𝜓) ↔ (𝜒 ∧ 𝜑))) |
| 8 | 2, 7 | ceqsexv 2802 |
. . 3
⊢
(∃𝑦(𝑦 = 𝐴 ∧ (𝜃 ∧ 𝜓)) ↔ (𝜒 ∧ 𝜑)) |
| 9 | 8 | exbii 1619 |
. 2
⊢
(∃𝑥∃𝑦(𝑦 = 𝐴 ∧ (𝜃 ∧ 𝜓)) ↔ ∃𝑥(𝜒 ∧ 𝜑)) |
| 10 | | 19.41v 1917 |
. . . 4
⊢
(∃𝑥(𝑦 = 𝐴 ∧ (𝜃 ∧ 𝜓)) ↔ (∃𝑥 𝑦 = 𝐴 ∧ (𝜃 ∧ 𝜓))) |
| 11 | | simpr 110 |
. . . . 5
⊢
((∃𝑥 𝑦 = 𝐴 ∧ (𝜃 ∧ 𝜓)) → (𝜃 ∧ 𝜓)) |
| 12 | | gencbvex.4 |
. . . . . . . 8
⊢ (𝜃 ↔ ∃𝑥(𝜒 ∧ 𝐴 = 𝑦)) |
| 13 | | eqcom 2198 |
. . . . . . . . . . 11
⊢ (𝐴 = 𝑦 ↔ 𝑦 = 𝐴) |
| 14 | 13 | biimpi 120 |
. . . . . . . . . 10
⊢ (𝐴 = 𝑦 → 𝑦 = 𝐴) |
| 15 | 14 | adantl 277 |
. . . . . . . . 9
⊢ ((𝜒 ∧ 𝐴 = 𝑦) → 𝑦 = 𝐴) |
| 16 | 15 | eximi 1614 |
. . . . . . . 8
⊢
(∃𝑥(𝜒 ∧ 𝐴 = 𝑦) → ∃𝑥 𝑦 = 𝐴) |
| 17 | 12, 16 | sylbi 121 |
. . . . . . 7
⊢ (𝜃 → ∃𝑥 𝑦 = 𝐴) |
| 18 | 17 | adantr 276 |
. . . . . 6
⊢ ((𝜃 ∧ 𝜓) → ∃𝑥 𝑦 = 𝐴) |
| 19 | 18 | ancri 324 |
. . . . 5
⊢ ((𝜃 ∧ 𝜓) → (∃𝑥 𝑦 = 𝐴 ∧ (𝜃 ∧ 𝜓))) |
| 20 | 11, 19 | impbii 126 |
. . . 4
⊢
((∃𝑥 𝑦 = 𝐴 ∧ (𝜃 ∧ 𝜓)) ↔ (𝜃 ∧ 𝜓)) |
| 21 | 10, 20 | bitri 184 |
. . 3
⊢
(∃𝑥(𝑦 = 𝐴 ∧ (𝜃 ∧ 𝜓)) ↔ (𝜃 ∧ 𝜓)) |
| 22 | 21 | exbii 1619 |
. 2
⊢
(∃𝑦∃𝑥(𝑦 = 𝐴 ∧ (𝜃 ∧ 𝜓)) ↔ ∃𝑦(𝜃 ∧ 𝜓)) |
| 23 | 1, 9, 22 | 3bitr3i 210 |
1
⊢
(∃𝑥(𝜒 ∧ 𝜑) ↔ ∃𝑦(𝜃 ∧ 𝜓)) |